Association Genetics of Coastal Douglas Fir (*Pseudotsuga menziesii* var. *menziesii*, Pinaceae). I. Cold-Hardiness Related Traits

Andrew J. Eckert,* Andrew D. Bower,† Jill L. Wegrzyn,‡ Barnaly Pande,‡ Kathleen D. Jermstad,§ Konstantin V. Krutovsky,** J. Bradley St. Clair† and David B. Neale‡,§,1

*Section of Evolution and Ecology and [‡]Department of Plant Sciences, University of California, Davis, California 95616, [†]U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, Oregon 97331, [§]Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Department of Agriculture Forest Service, Placerville, California 95667 and **Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas 77843

Manuscript received March 2, 2009 Accepted for publication May 20, 2009

ABSTRACT

Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small ($r^2 < 0.05$) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of coldtolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.

fundamental goal of molecular population and **1** quantitative genetics is to discover polymorphisms that underlie adaptive phenotypic traits. Elucidation of the genetic components for ecologically relevant traits within natural populations has been slow, due mostly to the disconnect between organisms with detailed genomic resources and those that have phenotypes with ecological relevance (STINCHCOMBE and HOEKSTRA 2008). Rapid advances and applications of high-throughput marker technologies are beginning to amend this disconnect for forest trees. Several applications of association mapping approaches using functional marker data have been fruitful in identifying putatively causal single-nucleotide polymorphisms (SNPs) for an array of adaptive phenotypes across different forest tree species. The importance of these associations is clear, with putative applications ranging from marker-assisted breeding to gene conservation in the face of climate change (Walther et al. 2002; Aitken et al. 2008).

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.109.102350/DC1.

¹Corresponding author: Department of Plant Sciences, Mail Stop 6, University of California, Davis, CA 95616. E-mail: dbneale@ucdavis.edu

Adaptation to cold is one of the greatest challenges to forest trees and is highly synchronized with environmental cues, primarily photoperiod and temperature (SAXE et al. 2001; Howe et al. 2003). The annual growth cycle of temperate forest trees involves a trade-off between the timing of initiation and cessation of growth that takes full advantage of favorable climatic conditions, while avoiding cold damage from late frosts in the spring and early frosts in the fall. Timing of bud flush is predominantly influenced by temperature following adequate chilling, while bud set is influenced by photoperiod (short days), as well as temperature, soil moisture, nutrition, and light quality (SAKAI and LARCHER 1987; Howe et al. 2003). The first stage of cold hardiness is also induced by short days, while low temperatures induce the second stage (Weiser 1970; Sakai and Larcher 1987).

Here, we take an association genetic approach to the dissection of cold-hardiness related traits within natural populations of coastal Douglas fir [*Pseudotsuga menziesii* (Mirb.) Franco var. *menziesii*]. The range of this species extends from the Pacific Coast of North America to the eastern slope of the Rocky Mountains, with trees from the Pacific Coast classified as *P. menziesii* var. *menziesii*

and those from the Rocky Mountains classified as *P. menziesii* var. *glauca* (Bessin.) Franco. The success of Douglas fir across this highly heterogeneous landscape is due largely to its ability to maximize growth during favorable climatic conditions, balanced with tolerance to low temperatures (Rehfeldt 1989; St. Clair *et al.* 2005; St. Clair 2006).

Genetic variation for cold hardiness in coastal Douglas fir is well documented among geographic sources and among families within sources (CAMPBELL and SORENSEN 1973; White 1987; Loopstra and Adams 1989; Aitken and Adams 1996, 1997; O'Neill et al. 2001; St. Clair 2006). Most of these traits are also heritable, with h^2 values ranging from 0.10 to 0.85. Population differences in cold adaptation across the range of Douglas fir are strongly influenced by geographic and climatic variables (Howe et al. 2003). Differences in cold season temperature and associated geographic variables (e.g., latitude, elevation, and distance from the ocean) are important selective forces driving local adaptation of populations (St. Clair et al. 2005). For example, population differentiation at quantitative traits (Q_{ST}) related to fall cold hardiness is eightfold greater than differentiation at anonymous and presumably neutral markers (F_{ST}) , suggesting the action of natural selection acting upon these traits (St. Clair 2006). The genes underlying cold hardiness, however, have remained elusive, despite numerous efforts to map quantitative trait loci (QTL) (JERMSTAD et al. 2001a,b, 2003) and to analyze patterns of collocation between QTL and candidate genes (Wheeler et al. 2005).

Expression studies support the hypothesis that similar types of genes to those identified in Arabidopsis are involved with cold adaptation in conifers (Guy et al. 1985; Thomashow 1999; Fowler and Thomashow 2002; Sekai et al. 2002; Lee et al. 2005; Yakovlev et al. 2006; HOLLIDAY et al. 2008). Population genetic investigations into patterns of diversity and divergence at candidate genes for cold adaptation, as well as a suite of other adaptive phenotypes, however, often find few loci consistent with the action of natural selection (Brown et al. 2004; Krutovsky and Neale 2005; González-Martínez et al. 2006; Heuertz et al. 2006; Ingvarsson et al. 2006; Hall et al. 2007; Pyhäjärvi et al. 2007; Eveno et al. 2008) (reviewed by Neale 2007; Savolainen and Pyhäjärvi 2007; Neale and Ingvarsson 2008). Even the low power of the methods employed in these investigations (ZHAI et al. 2009) and the theoretical expectations that selected loci may be unable to be detected using outlier approaches (Le Corre and Kremer 2003) are unlikely to account for the paucity of results. Larger sets of candidate genes are crucial, therefore, for the continued investigation and identification of major portions of the adaptive genetic diversity in forest trees.

Similar patterns have been found in association genetic analyses, where only a small number of markers

all of small effect are detected (Neale and Savolainen 2004; Thumma et al. 2005; González-Martínez et al. 2007, 2008; Ingvarsson et al. 2008) (reviewed by Neale 2007; Grattapaglia and Kirst 2008; Grattapaglia et al. 2009). Much of this work has focused on point mutations within coding regions, thus ignoring regulatory regions affecting gene expression. Seminal work has illuminated the possibility that many of the adaptive responses by forest trees to their environments, however, may stem from epigenetic effects (Johnsen et al. 1996; Hänninen et al. 2001; Saxe et al. 2001; Johnsen et al. 2005a,b; Webber et al. 2005; Kvaalen and Johnsen 2008). The prevalence of such effects modifies the expectation of the quantity, type, and effect size of genes involved with adaptation by forest trees.

The segregation of adaptive genetic diversity by coastal Douglas fir along environmental gradients is clearly established. Surveys of molecular diversity and divergence across 139 candidate genes have documented a set of those genes that deviate from the standard neutral model (Krutovsky and Neale 2005; Eckert et al. 2009b). These are prime candidates for the further dissection of cold-hardiness related traits using association mapping (cf. WRIGHT and GAUT 2005). Here, we aim to bridge the gap between molecular population and quantitative genetics, using an association mapping approach. Our primary goal is to identify single-marker associations with 21 cold-hardiness traits. In doing so, we highlight the need for future investigations into landscape approaches to the description of adaptive genetic diversity, as well as studies of epigenetic effects in coastal Douglas fir.

MATERIALS AND METHODS

Association population and phenotypic data: Association population: The association population consisted of 700 of the 1338 unrelated families that were assessed in the genecology study of St. Clair et al. (2005). They represent an extensive rangewide sample covering 6.8° of latitude, 4.1° of longitude, and a diversity of environmental conditions (Figure 1; supporting information, Table S1). Wind-pollinated seed was collected from trees that originated from naturally regenerated stands throughout the range of Douglas fir in western Oregon and Washington. Twenty progeny were grown in raised nursery beds that were located in Corvallis, Oregon. Families were randomly assigned to five-tree row plots in each of the four raised beds, with each bed treated as a block. The term family is used to refer to source trees (*i.e.*, mothers) because the phenotypic values we use are breeding values, and this is the terminology used in the original studies in which the phenotypes were measured (cf. St. Clair et al. 2005; St. Clair

Phenotypes: Seedlings were grown for 2 years, during which they were measured for 21 traits related to cold injury, emergence, bud phenology, growth, and resource partitioning (Table 1). The data for cold-tolerance traits were obtained from St. Clair (2006). Emergence was determined following procedures described by CAMPBELL and SORENSEN (1979). Height and bud set were measured at the end of the first

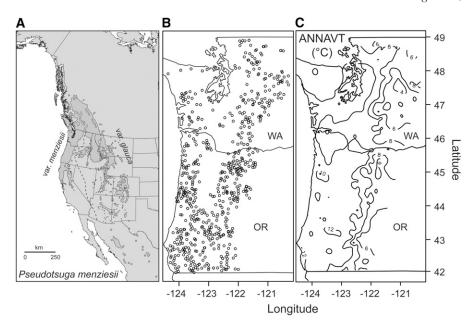


FIGURE 1.—Descriptive information about the distribution, sampling localities, and climate across the range of coastal Douglas fir. (A) Range map for coastal Douglas fir. (B) Sample locations for coastal Douglas fir across Oregon and Washington. Each point denotes a single tree (n=700) that was sampled, and since the phenotypes represent breeding values, these samples are referred to as families. (C) The annual average temperature (ANNAVT) gradient across the sample localities. Contours are isotherms, ranging from 6° to 12° .

growing season, and bud burst was measured at the beginning of the second growing season. Bud set was also measured at the end of the second growing season. Samples were frozen in a programmable freezer and fall cold hardiness was assessed on needle, stem, and bud tissues after the second growing season following the methods of AITKEN and ADAMS (1996). Whole seedlings, including roots, were then harvested and were measured for stem diameter, height from root collar to terminal bud, height to bud scar resulting from second flushing, and length of the longest root. Dry weights of roots and shoots were determined after drying the seedlings at 80° for 24 hr. Values for each phenotypic trait were calculated as the grand mean of family plot means. Year-to-year environmental variation was removed by standardizing the plot mean data, so that the means and standard deviations of control plots were equal across years.

Individual phenotypic traits were highly correlated (Pearson's r: -0.71–0.94). To account for these correlations, multivariate traits were constructed with a principal components analysis (PCA), using PROC PRINCOMP with the correlation matrix in the SAS software (SAS system for Windows, version 9.1, Copyright 2002; SAS Institute, Cary, NC). We retained all components with eigenvalues greater than one. In total these components accounted for 80.0% of the variance. Factor loadings for each component are located in Table S2.

SNP genotyping: *DNA isolation:* Total genomic DNA was isolated using the DNeasy plant mini kit (QIAGEN, Valencia, CA) and quantified using the PicoGreen assay (Invitrogen, Carlsbad, CA). For each maternal tree, haploid megagametophyte tissue excised from 10 seeds was combined and ground under liquid nitrogen. Inferring the diploid maternal genotype from haploid tissues can result in a bias against detection of heterozygotes. Using 10 megagametophytes, however, results in only a \sim 0.2% expected probability of this type of error (MORRIS and SPIETH 1978). All DNA extractions were carried out at the U.S. Department of Agriculture Forest Service, National Forest Gel Electrophoresis Laboratory at the Institute of Forest Genetics (Placerville, CA).

Candidate gene selection: Candidate genes with a putative role in conferring tolerance to cold temperatures were selected according to three criteria: (i) genes found to collocate with QTL for cold hardiness in Douglas fir, (ii) genes with physiological roles in cold tolerance response, and (iii) genes showing differential expression in microarray studies of Arabidopsis. A

full description of the candidate gene selection process can be found elsewhere (Krutovsky and Neale 2005; Eckert *et al.* 2009b). In brief, we used the 939 genes identified by Lee *et al.* (2005) as cold regulated in Arabidopsis to mine Douglas fir expressed sequence tag (EST) libraries using standard BLAST tools. Putative homologs were sequence validated prior to construction of the final candidate gene list.

SNP discovery and selection: The discovery of SNPs was conducted previously by direct sequencing of haploid megagametophyte DNA samples in a diversity panel of 23–32 trees for 18 (KRUTOVSKY and NEALE 2005) and 121 (ECKERT et al. 2009b) cold-hardiness and wood-related candidate genes. From those sets (400 SNPs from KRUTOVSKY and NEALE 2005; 933 SNPs from ECKERT et al. 2009b) we selected 384 SNPs from 117 genes with which to construct a GoldenGate genotyping assay (Illumina, San Diego). This platform has been shown previously to work well for conifer genomes (PAVV et al. 2008; ECKERT et al. 2009a). Selection of SNPs was based on four criteria: (i) gene function, (ii) SNP annotation, (iii) Illumina designability score, and (iv) minor allele frequency. One to 12 SNPs per gene were selected to capture most of the haplotypic variation within candidate genes (Table S3).

SNP genotyping: Genotyping was carried out using the Illumina GoldenGate SNP genotyping platform (LANDEGREN et al. 1988; OLIPHANT et al. 2002; FAN et al. 2003). In brief, this assay involves generating hundreds of templates with specific target and address sequences, using allele-specific extension followed by ligation and amplification with universal primers. Fluorescent products are hybridized to precoded beads on an array matrix from which the signal intensities are subsequently determined using the BeadArray Reader (Illumina). This is followed by quantification and matching of those intensities to specific alleles using BeadStudio ver. 3.1.14 (Illumina). Manual adjustments to genotypic clusters were made when necessary. For inclusion of SNPs into the final data set, we used conservative thresholds of 0.35 and 0.85 for the Gen-Call₅₀ (GC₅₀) and call rate (CR) indexes, respectively. These are common quality metrics with which to evaluate the successfulness of Illumina genotyping data (cf. PAVY et al. 2008; Eckert et al. 2009a) and represent the reliability of samples to be clustered into genotypic categories (GC₅₀) and the fraction of the 700 samples that had a genotype called for a given SNP (CR). Genotyping was conducted at the DNA Technologies Core Facility located at the University of

TABLE 1

Description of measured traits listed by phenotypic categories

Trait	Abbreviation	Description	Unit
Emergence			
Rate of emergence	EMEAN	Cumulative no. of seedlings that emerged in a plot	Probits d^{-1}
Standard deviation	EMSTD^a	Standard deviation of the rate of emergence	Probits d^{-1}
Growth and resource partitioning			
Stem diameter	DIAM	At 1 cm above root collar after 2 yr	mm
Propensity to 2 nd flush	FLUSH	Proportion of 2-yr seedlings with lammas growth of terminal leader	Proportion
Length of 2 nd flush	FLUSHLG	Distance from visible bud scar to base of terminal bud	cm
Height	HT1	From root collar to base of terminal bud after 1 yr	cm
Height	$HT2^a$	From root collar to base of terminal bud after 2 yr	cm
Height increment	HTINC	HT2-HT1	cm
Root length	RTLG	From root collar to tip of longest root	mm
Root-to-shoot ratio	RTSH	Ratio of dry weights after 2 yr	$g g^{-1}$
Root weight	RTWT	Root dry weight after 2 yr	g
Shoot weight	SHWT	Shoot dry weight after 2 yr	g
Taper	TAPER	DIAM/HT2	$\mathrm{mm}~\mathrm{cm}^{-1}$
Total weight	$TOTWT^a$	Sum of shoot and root weights	g
Phenology and cold tolerance			
Bud burst	BB2	First green needles from terminal bud	Days since Jan. 1
Bud set	BS1	First visible terminal bud scales at end of first growing season	Days since Jan. 1
Bud set	BS2	First visible terminal bud scales at end of second growing season	Days since Jan. 1
Bud cold injury	Budcold	Percentage of cold injury	%
Needle cold injury	Ndlcold	Percentage of cold injury	%
Stem cold injury	Stmcold	Percentage of cold injury	%
Other		5 J /	
Seed weight	SDWT^b	Weight per 100 seeds	g

Loadings of derived traits from PCA are listed in Table S2.

^a Variables not included in PCA since the trait is a linear combination of other traits.

California, Davis (http://www.genomecenter.ucdavis.edu). Primer sequences used for SNP discovery and Illumina genotyping are available in File S1 and File S2).

Tests for association: Population structure: Population structure is the leading cause of false positives in genetic association studies. Populations of coastal Douglas fir are not differentiated strongly from one another using allozymes (L1 and Adams 1989), RAPDs (Aagaard et al. 1998), or chloroplast and nuclear microsatellites (VIARD et al. 2001; Krutovsky et al. 2009). The average level of population differentiation (G_{ST}) was $\sim 0.02-0.07$ in all studies, with L_I and Adams (1989) noting weak to moderate (r < 0.30) isolation-by-distance effects in the coastal populations. Low levels of population structure can be observed in widespread species when populations as defined apriori are not meaningful biologically (WAPLES and GAGGIOTTI 2006). Applications of the Bayesian clustering algorithm in the program STRUCTURE (cf. FALUSH et al. 2003) produce results that concur with the observed low values of G_{ST} , with most individuals being assigned equally well to all of the assumed clusters (K) across values of K ranging from 2 to 18 (Krutovsky et al. 2009). For association analyses, we utilized a Q-matrix defined by 15 clusters, because this was the smallest value of K producing a large (i.e., >100 log units) change in the log probability of the data. This matrix was estimated using 25 isozymes and six nuclear microsatellite markers for the same families as those presented here.

Common garden studies indicate that a set of 57 families sampled east of the Cascade crest in northeastern Washington resembled the interior variety more so than the coastal variety for cold tolerance, phenology, and growth phenotypes (ST. CLAIR et al. 2005). Genetic differentiation of these families was assessed using hierarchical analysis of molecular variance (AMOVA) with 25 allozyme markers (data from Krutovsky et al. 2009). We defined populations according to 20 ecological regions and then placed those populations into groups corresponding to populations located to the west or the east of the Cascade crest in northeastern Washington (Figure S1). Confidence intervals (95% C.I.'s) for global fixation indexes corresponding to F_{CT} (between groups), F_{SC} (among populations within groups), and $F_{\rm IS}$ (within individuals) across loci were determined by bootstrapping (n = 20,000 replicates). Global fixation indexes were obtained by summing variance components across loci. All analyses were conducted in Arlequin ver. 3.11 (Excoffier et al. 2005). These analyses were used to investigate further population structure putatively not captured by patterns in the Q-matrix obtained from Krutovsky *et al.* (2009).

Statistical models: Single-marker models were conducted for all SNP-trait combinations. We preferred single-marker relative to haplotype-based tests due to their simplicity, as well as to their similar statistical power to that of haplotype-based tests (Long and Langley 1999). A general linear model (GLM)

^b Nonseedling trait, not included in PCA.

was fitted to each trait–SNP combination (cf. Yu et al. 2006), with SNP markers as fixed effects and elements of the Q-matrix as covariates. We removed the first cluster in the Q-matrix because if included it would make an unnecessary linear dependence among the covariates when we performed F-tests of the covariates. All GLM analyses were conducted using Tassel ver. 2.0.1 (released April, 2007). The positive false discovery rate (FDR) method was used to correct for multiple testing (STOREY 2003). All the necessary data to perform these analyses are available in File S1, File S2, File S3, File S4, and File S5).

Modes of inheritance and LD: The prevalence of nonadditive effects was quantified using the ratio of dominance (d) to additive (a) effects. Partial or complete dominance was defined as values in the range of 0.50 < |d/a| < 1.25, while additive effects were defined as values in the range $-0.50 \le d/a \le 0.50$. Values of |d/a| > 1.25 were equated with over-or underdominance. We also investigated patterns of linkage disequilibrium (LD) among SNPs that were associated significantly with the same trait, using the maximum-likelihood approach implemented within the GENETICS package available in R (Warnes and Leisch 2006). We quantified patterns of LD using the squared allelic correlation coefficient (r^2) and tested the significance of the inferred level of disequilibrium using Fisher's exact tests with a Bonferroni correction to account for multiple testing.

RESULTS

Data summary: The 384 SNPs chosen for genotyping using the Illumina GoldenGate platform represent 117 unique candidate genes with 1–12 SNPs per gene (Table S3). Of the 384 SNPs, 228 (59%) yielded data consistent with our quality thresholds. The median GC_{50} score across all usable SNPs was 0.742, with the average CR being 94%. The majority of the 228 successfully genotyped SNPs were silent, with nonsynonymous SNPs accounting for 25% of the total. This did not deviate greatly from the original fraction in the full 384-SNP set (28%).

Population structure: Strong patterns of population stratification were not apparent in the results obtained from Krutovsky et al. (2009). Most individuals were assigned equally well to one of the K clusters (i.e., $Q \sim$ 1/K). Latitude and longitude were largely uncorrelated to the Q-values for each of the 15 clusters, but patterns were apparent. Four clusters illustrated a correlation of Q-values to geography, with one of the 15 clusters corresponding to the 57 families located east of the Cascade crest in northeastern Washington (Figure S2). Differentiation across 25 allozyme markers for these families is moderate (global $F_{CT} = 0.035$; 95% C.I., 0.015–0.082) and accounts for >90% of the differentiation among populations. Inbreeding within populations, however, was not significant ($F_{IS} = 0.026$; 95% C.I., -0.005–0.055). The trait means for these families also differ significantly for 23 of the 25 traits (Table S4). We focus on association analyses that have these 57 families removed and then compare the results to those obtained when they are included.

Summary of significant associations: A total of 5700 (228 SNPs \times 25 traits) association tests were performed.

Of these, 455 were significant at the nominal threshold of P=0.05. Multiple test corrections using the FDR method reduced this number to 30 at a significance threshold of Q=0.10. Of these, four marker–trait pairs remain significant after a conservative Bonferroni correction (Table 2). The number of significant associations varied across traits, ranging from 0 to 6. The 30 significant associations represent 15 unique SNPs from 12 candidate genes that affect 10 different traits. We discuss these associations in further detail below.

Individual phenotypic traits: Growth and resource partitioning traits: Twelve of the 21 traits were related to growth and resource partitioning (Table 1). These traits had a total of four significant marker–trait associations located within four unique candidate genes. One of these associations, the effect of marker ES421311.1-369 on root length (RTLG), survives a Bonferroni correction. These markers explain a small portion of the phenotypic variance in our sample, with effects ranging from 1.9 to 3.6%.

Phenology and cold-tolerance traits: Six of the 21 traits were related to phenology and cold tolerance (Table 1). These traits had a total of 18 significant associations representing 11 unique SNPs located within 10 different candidate genes. One of these 18 associations survives a Bonferroni correction (Table 2). The majority of these SNPs illustrated patterns of gene action consistent with nonadditive effects (Table 3). For example, heterozygotes for the CN637339.1-367 marker set bud 3 days later on average than either homozygote class (274.3 for A/A, 277.7 for A/G, 275.1 for G/G). This marker is also associated with cold damage to stems and illustrated a similar mode of gene action, with heterozygotes having 0.35% more cold damage on average (2.1 for A/A, 2.4 for A/G, 1.9 for G/G). These 2 traits, however, are correlated with one another. The G allele at this marker is the derived state and causes an isoleucine (Ile) \rightarrow valine (Val) amino acid substitution. Interestingly, all 5 additional marker-trait associations for cold damage to the stem phenotype illustrate a similar pattern, with heterozygotes having significantly more damage.

Polymorphisms located within different candidate genes that were associated to the same trait were largely in linkage equilibrium. Departures from this pattern, however, were apparent. Significant pairwise estimates of LD were documented between markers located in the CN637306.1, f3h2, Pm_CL234Contig1-156, and CN638489.1 candidate gene loci. These three genes have SNPs associated significantly with cold damage to the stems, with 2.5–3.4% of the phenotypic variance being explained by each marker. The departures from linkage equilibrium are small ($r^2 < 0.20, P < 0.0001$), yet define a set of candidate genes whose products are a transcription factor (CN63730.1), a rab GTPase (Pm_CL234Contig1), a cell wall architecture protein (α -expansin), and a flavanoid pathway protein (f3h2). Marker CN63730.1-381, however, deviates significantly

TABLE 2 List of significant marker-trait pairs after a correction for multiple testing (FDR $Q \le 0.10$), using the 643 families located west of the Cascade crest

Trait	Locus	Gene product	SNP^a	AS^b	n	F	r^2	P	Q
Emergence									
EMEAN	60s RPL31a-418	60s ribosomal protein L31a	[A/G] ^c	_	570	9.501	0.032	0.0001	0.0372
EMEAN	CN639236.1-518	Guanine nucleotide- binding protein	$[A/G]^d$	A	617	8.092	0.025	0.0003	0.0765
Growth and		0.1							
resource									
partitioning	FC 401211 1960	TT 1 2 1 2 1	[A /O]c	0	C 40	00.041	0.096	1.0 × 10-6	0.0000
RTLG RTSH	ES421311.1-369 Pm_CL783Contig1-212	Hypothetical protein SOUL heme-binding	$[A/G]^e$ $[A/G]^e$	G C	642 641	23.841 13.696	0.036 0.021	1.3×10^{-6} 0.0002	0.0038 0.0573
	O	family protein		C					
RTSH	4CL1-363	4-coumarate:CoA ligase 1	$[A/G]^e$	_	643 614	12.936 13.832	0.019 0.022	0.0003	0.0765
TAPER	LEA-EMB11-263	Late embryogenesis abundant protein	[A/C] ^c	_	014	13.832	0.022	0.0002	0.0561
Phenology		asaraan protein							
and cold tolerance									
BB2	<i>LEA-EMB11-</i> 263	Late embryogenesis	$[A/C]^c$	_	614	16.748	0.025	4.9×10^{-5}	0.0342
BB2	60s RPL31a-295	abundant protein 60s ribosomal	$[A/G]^d$	_	641	12.834	0.019	0.0004	0.0765
BB2	60s RPL31a-418	protein L31a 60s ribosomal	[A/G] ^c		570	7.607	0.024	0.0006	0.0913
BBZ	003 14 2514 110	protein L31a	[11/0]		370	7.007	0.021	0.0000	0.0313
BS1	CN637339.1-337	Hypothetical protein	$[A/G]^{e}$	A	599	9.029	0.029	0.0001	0.0429
BS1	Pm_CL783Contig1-212	SOUL heme-binding family protein	$[A/G]^e$	С	641	12.485	0.019	0.0004	0.0841
BS2	60s RPL31a-418	60S ribosomal protein L31a	$[A/G]^c$	_	570	7.752	0.026	0.0005	0.0841
Budcold	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	$[A/G]^e$	_	641	9.118	0.028	0.0001	0.0427
Budcold	CN638489.1-116	α-expansin	$[A/G]^d$	C	628	7.607	0.024	0.0005	0.0913
Ndlcold	sSPcDFD040B03103-274	MADS-box transcription factor	$[A/G]^d$	С	641	20.392	0.03	7.5×10^{-6}	0.0071
Ndlcold	CN637306.1-381	MYB-like transcription factor	$[A/G]^d$	T	642	8.563	0.026	0.0002	0.0561
Ndlcold	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	$[A/G]^e$	_	641	7.875	0.024	0.0004	0.0841
Ndlcold	f3h2-54	Flavanone-3-hydroxylase	$[\mathbf{A}/\mathbf{C}]^c$	_	642	7.749	0.023	0.0005	0.0841
Stmcold	CN637306.1-381	MYB-like transcription factor	$[\mathbf{A}/\mathbf{G}]^d$	T	642	11.485	0.034	1.3×10^{-5}	0.0101
Stmcold	f3h2-54	Flavanone-3-hydroxylase	$[\mathbf{A}/\mathbf{C}]^c$		642	9.427	0.028	0.0001	0.0372
Stmcold	Pm_CL234Contig1-156 CN637339.1-337	Rab GTPase	$[A/T]^c$	T A	594 599	8.791 8.593	0.029 0.028	0.0002 0.0002	0.0513 0.0561
Stmcold Stmcold	CN638489.1-116	Hypothetical protein	$[A/G]^e$ $[A/G]^d$	C	628	8.036	0.028	0.0004	0.0361 0.0765
Stmcold	sSPcDFD040B03103-274	α-expansin MADS-box transcription	$[A/G]^d$	C	641	12.34	0.023	0.0004	0.0841
Multivariate		factor							
traits Prin1	Pm_CL783Contig1-212	SOUL heme-binding	$[A/G]^e$	С	641	15.878	0.024	0.0001	0.0372
1 11111	1 m_011/0900mig1-414	family protein	[11/0]	U	OTI	13.070	0.044	0.0001	0.0374
Prin1	sSPcDFD040B03103-274	MADS-box transcription factor	$[A/G]^d$	С	641	14.843	0.023	0.0001	0.0427
Prin2	60s RPL31a-418	60s ribosomal protein L31a	$[A/G]^c$	_	570	12.648	0.043	4.3×10^{-6}	0.0048
Prin2	60s RPL31a-55	60s ribosomal protein L31a	$[A/G]^d$	_	571	9.836	0.033	0.0001	0.0372
Prin3	<i>LEA-EMB11-</i> 263	Late embryogenesis abundant protein	$[A/C]^c$	_	614	22.475	0.034	2.7×10^{-6}	0.0038
Prin3	4CL1-520	4-coumarate:CoA ligase 1	$[A/G]^e$	_	641	9.512	0.028	0.0001	0.0372

^a SNPs in boldface type were not consistent with Hardy-Weinberg equilibrium (HWE) expectations, as tested using Fisher's exact tests, at a Bonferroni-corrected significance threshold of P = 0.00022 (i.e., 0.05/228).

^b The ancestral state as determined by comparison to a single sequence of bigcone Douglas fir (*Pseudotsuga macrocarpa*). Dashes indicate that an outgroup sequence was unavailable.

^c Noncoding polymorphism. ^d Synonymous polymorphism.

[&]quot;Nonsynonymous polymorphism.

TABLE 3

List of marker effects for significant marker-trait pairs using the 643 families located west of the Cascade crest

Trait	Locus ^a	Gene product	$2a^b$	d^c	d/a	$2a/\sigma_{\mathrm{p}}{}^{d}$	Frequency ^e	α^f
Emergence								
EMEAN	60s RPL31a-418	60s ribosomal protein L31a	0.002	0.001	1.01	0.69	0.24 (G)	-0.0004
Phenology and cold tolerance		1						
BB2	60s RPL31a-418	60s ribosomal protein L31a	3.26	-1.21	-0.73	0.74	0.24 (G)	0.6916
BS1	CN637339.1-337	Hypothetical protein	0.73	2.80	7.68	0.10	0.21 (G)	0.9737
BS2	60s RPL31a-418	60s ribosomal protein L31a	7.36	-1.54	-0.42	0.62	0.24 (G)	2.0844
Budcold	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	1.10	-0.04	-0.07	0.85	0.36 (G)	-0.1740
Budcold	CN638489.1-116	α-expansin	0.39	0.30	1.54	0.30	0.49 (A)	-0.0900
Ndlcold	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	1.78	-0.11	-0.12	0.85	0.36 (G)	-0.2854
Stmcold	Pm_CL234Contig1-156	rab GTPase	0.50	0.24	0.96	0.36	0.76 (A)	-0.0874
Stmcold	CN637339.1-337	Hypothetical protein	0.31	0.35	2.23	0.22	0.21 (G)	0.2791
Stmcold	CN638489.1-116	α-Expansin	0.45	0.34	1.49	0.32	0.49 (A)	-0.1044
Multivariate		_						
traits								
Prin2	60s RPL31a-418	60s ribosomal protein L31a	1.36	0.47	0.70	0.83	0.24 (G)	0.0251
Prin2	60s RPL31a-55	60s ribosomal protein L31a	1.03	0.32	0.62	0.63	0.35 (A)	0.0895
Prin3	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	0.72	0.09	0.23	0.51	0.36 (G)	-0.2366

^a Markers with only two observed genotypic classes or those that deviated significantly from HWE expectations are not included. ^b Calculated as the difference between the phenotypic means observed within each homozygous class ($2a = |G_{BB} - G_{bb}|$, where G_{ij} is the trait mean in the ijth genotypic class).

from Hardy–Weinberg equilibrium (HWE) expectations (P < 0.0001).

Emergence: Two of the 21 traits were related to emergence. These traits had a total of two significant associations representing two unique candidate genes. Both markers explained $\sim\!3\%$ of the phenotypic variance. Mean values of emergence (EMEAN) across genotypic classes at marker 60s RPL31a-418 indicate that the G allele is dominant to the A allele (0.0435 for A/A, 0.0459 for A/G, and 0.0458 for G/G). A similar analysis for the CN639236.1-518 locus was not performed, because the G/G genotype was not observed in our sample.

Multivariate phenotypic traits: Marker-trait associations with principal components mirrored those detected for individual traits. The first principal component accounted for a large fraction of the phenotypic variance (44.8%). This component was primarily composed of

growth traits, with phenology and cold-tolerance traits also strongly affecting its composition (Table S2). Two SNPs located within two different candidate genes were associated significantly with this component. Both loci explained a small fraction of the phenotypic variance $(r^2 < 0.025)$ and were associated primarily with individual traits related to phenology and cold tolerance. The second principal component was related largely to cold damage traits. Two markers located within the 60s RPL31a locus were associated significantly with this component (Table 2). These markers were also in significant LD with one another and explained similar fractions of the phenotypic variance (Figure 2). The average values of this component across genotypic classes for each SNP are suggestive of partial dominance, with the A allele at the 60s RPL31a-55 locus and the G allele at the 60s RPL31a-418 locus being partially dominant (Figure 2). These are also the alleles that are associated

⁶ Calculated as the difference between the phenotypic mean observed within the heterozygous class and the average phenotypic mean across both homozygous classes $[d = G_{Bb} - 0.5(G_{BB} + G_{bb})]$, where G_{ij} is the trait mean in the ijth genotypic class].

 $^{^{}d}$ $\sigma_{\rm p}$, standard deviation for the phenotypic trait under consideration. Prior to calculating this measure, the observed distributions of the trait values were tested for normality using Kolmogorov–Smirnov tests and a Bonferroni-corrected significance threshold of P=0.002 (i.e., 0.05/25).

[&]quot;Allele frequency of either the derived or the minor allele. SNP alleles corresponding to the frequency listed are given in parentheses.

The additive effect was calculated as $\alpha = p_B(G_{BB}) + p_b(G_{Bb}) - G$, where G is the overall trait mean, G_{ij} is the trait mean in the ij th genotypic class, and p_i is the frequency of the ith marker allele. These values were always calculated with respect to the derived allele. When this was unknown, the values listed are for the minor allele. Values calculated in the latter manner are in boldface type.

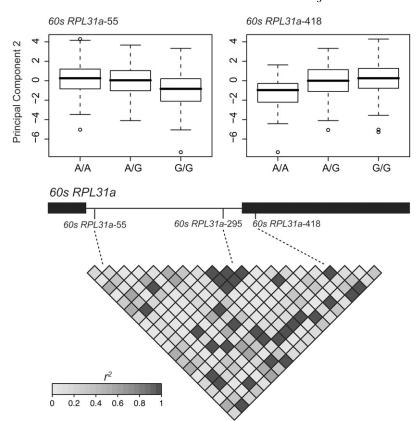


Figure 2.—An example of marker effects on the second principal component. This component is related largely to phenology and cold-tolerance traits. Each marker explains a small portion of the phenotypic variance $(r^2 \sim 3\%)$ and is consistent with an additive model of gene action. Whiskers in the box plots represent 1.5 times the interquartile range. The 2 associated SNPs are in LD with one another. Illustrated are the 21 SNPs discovered for the 60s RPL31a locus relative to the inferred gene model, as well as 3 of those 21 that were genotyped (dashed lines). Solid boxes denote exons in the gene model.

with less cold damage to stems, needles, and buds. The third principal component was related to bud burst and emergence and cold damage to needles. Two markers were associated significantly with this component, with each of those mirroring their effects on the single traits that are correlated with this component. No marker–trait associations survived multiple-test corrections for the fourth principal component.

Modes of gene action and marker effects: Many of the 30 SNPs associated significantly with at least one trait were consistent with modes of gene action other than codominance (Table 3). Four of the 13 marker–trait pairs (31%) for which dominance and additive effects could be calculated were consistent with over- or underdominance (|d/a| > 1.25). The majority of these markers were related to cold damage phenotypes, where the heterozygote had higher damage on average. The remaining 9 markers were split between modes of gene action that were additive [|d/a| < 0.50, n = 4 (31%)] or partially to fully dominant [0.50 < |d/a| < 1.25, n = 5 (38%)]. Most effects were small to moderate and accounted for only 10–85% of the phenotypic standard deviation.

The derived allele was typically the minor allele. The additive effects of these derived alleles varied by trait, but were often small to moderate in size (Table 3). The additive effects on the cold damage to stems phenotype (stmcold), for example, varied from -0.10% (CN637339.1-337) to 0.28% ($Pm_CL234Contig1-156$).

An analysis using the minor allele for those loci without an outgroup sequence found similar effects, with the minor allele typically conveying changes in trait consistent with cold hardiness (Table 3). The relationship between the genotypic classes of a marker associated to a phenotype and the environmental gradient that affects that phenotype is consistent with this pattern (Figure 3). For example, the G allele at the 4CL1-520 marker is the minor allele and genotypes containing this allele are found at sites with significantly lower annual average temperatures. Trees at these sites also had significantly lower cold damage to buds. The additive effect of the G allele at this marker was estimated to be -0.17% (Table 3).

Comparison to analyses using the full data set: Inclusion of the 57 families located east of the Cascade crest in northeastern Washington changed the association analyses dramatically. The number of significant associations increased to 668 at a nominal significance threshold of P=0.05. Multiple-test corrections using the FDR method reduced this number to 164 at a significance threshold of Q=0.10 (Table S5). These represent increases in the number of detected associations of 47 and 447%, respectively. These 164 associations represent 44 unique SNP markers located within 35 candidate genes. Surprisingly, the vast increase in significant results is caused by a set of 24 candidate genes, with markers in 7 of those 24 accounting for 40% of the increased number of significant tests. These 7

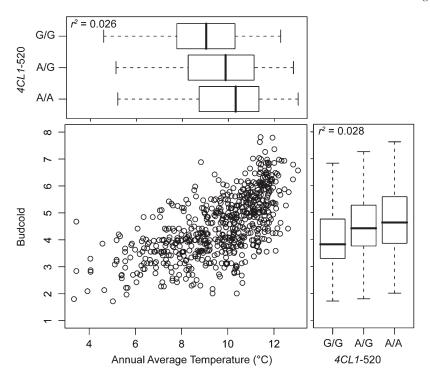


FIGURE 3.—An illustration of the relationship between phenotype, genotype, and the annual average temperature gradient (ANNAVT). Cold damage to buds is related to the annual average temperature of the locality where the source tree was sampled. This phenotype is also associated with a SNP at the *4CL1* locus. Genotypes at this SNP vary along the temperature gradient as expected, with the G allele being located at lower annual average temperatures. This SNP fits well with an additive model of gene action and is non-synonymous.

markers also exhibit increased levels of differentiation as measured by $F_{\rm CT}$ (Figure S3). The $Pm_CL61Contig1$ -134 and ES420757.1-311 markers, for example, have values of $F_{\rm CT} \sim$ 10-fold higher than SNPs that remained unassociated with a phenotype regardless of whether or not the 57 families were included (Figure 4). Each of these markers was associated to \sim 65% of the individual phenotypic traits when the 57 families in question were included in the analysis.

DISCUSSION

Associations and marker effects: Temperature is the most important environmental variable with respect to adaptation by coastal Douglas fir to the Pacific Northwest environments (St. Clair et al. 2005; St. Clair 2006). We have identified a set of 12 candidate genes that are associated significantly with cold hardiness in coastal Douglas fir. Four of the 15 polymorphisms within these genes are nonsynonymous substitutions, with the remainder being located largely in synonymous positions. These associations represent a refined list of candidate genes for further analysis, as well as provide insight into the genetic components of complex traits in coastal Douglas fir.

All 30 significant associations accounted for a small proportion of the phenotypic variance and were within the range of those published previously for forest trees (<1%-4%; Thumma *et al.* 2005; González-Martínez *et al.* 2007, 2008; Ingvarsson *et al.* 2008), as well as other wind-pollinated species (<1%-5%; Weber *et al.*

2007, 2008). Patterns such as these reflect a polygenic quantitative model, which is supported by a long history of quantitative genetic studies in forest trees (Namkoong 1979). Several marker alleles deviate from this quantitative model, however, when effects were measured in terms of phenotypic standard deviations (Table 3). Most of the associated markers accounted for less than half of a phenotypic standard deviation. Two markers in the 60s RPL31a candidate gene explain upward of 80% of the standard deviation for the second principal component (60s RPL31a-55-Prin2, 0.63 σ_p ; 60s RPL31a-418-Prin2, $0.83\sigma_p$). The additive effect of the latter marker on bud set, moreover, was large, with a substitution of the G allele producing a 2-day increase in the time to set bud. Such effects compounded across a few loci could explain large portions of the development of cold hardiness in coastal Douglas fir.

The cumulative effects across loci each with a small effect, however, can also be large. For example, $\sim\!20\%$ of the phenotypic variance in early wood specific gravity was explained by a handful of SNPs in loblolly pine (González-Martínez *et al.* 2007). Here, six SNPs explain $\sim\!17\%$ of the phenotypic variance in cold damage to stems (Table 2). Thus, analyses based on expanded sets of candidate genes have the potential to identify markers that explain a large fraction of the phenotypic variance across numerous traits.

Seventeen candidate genes were shown previously to collocate with clonally replicated spring and fall cold-hardiness QTL in coastal Douglas fir (Wheeler *et al.* 2005). Of those, 9 had SNPs genotyped within the association population. Marker–trait associations within

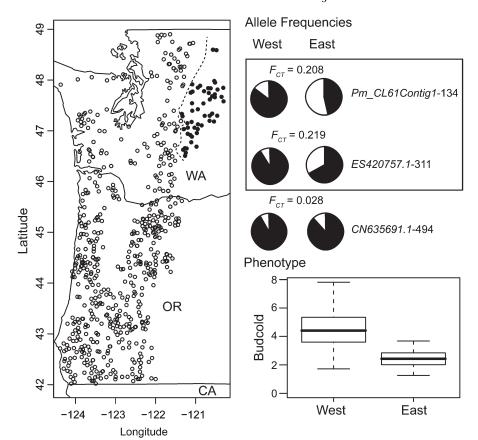


FIGURE 4.—The families located east of the Cascade crest in northeastern Washington affect the outcome of the association testing. Inclusion of these 57 families inflates the number of significant associations from 30 to 164. This is due mainly to a set of seven markers, each within a unique candidate gene, that show elevated levels of differentiation ($F_{\text{CT}} = 0.08 - 0.22$) across this region. Illustrated are two examples (markers enclosed in the box), with these SNPs being associated to ~65% of the traits when the 57 eastside families are included in the analysis. The global F_{CT} estimate for unassociated SNP and allozyme markers is in the range of 0.019-0.035 for comparison. Pie charts denote SNP allele frequencies east (open sections) and west (solid sections) of the Cascade crest.

these 9 genes did not survive multiple-test corrections when the families east of the Cascade crest were excluded from the analysis. When these families were included, however, 2 of those 9 genes harbored markers associated with at least one cold-hardiness related trait: α -tubulin and erd15. Both candidate genes were mapped to linkage group seven and collocated with a QTL for spring needle cold hardiness (cf. Figure 1 in Wheeler et al. 2005). Markers within these candidate genes were associated with bud-set and cold-tolerance phenotypes, respectively.

More than half of the SNPs associated with cold tolerance and bud set showed modes of gene action consistent with over- or underdominance (Table 3). A trade-off exists between growth and fall cold hardiness and these two traits are often negatively correlated, both phenotypically and genetically in Douglas fir (REHFELDT 1979; AITKEN et al. 1996). There is also a positive genetic correlation between bud set and growth (REHFELDT 1979, 1983; CAMPBELL 1986; LI and ADAMS 1993) and a negative genetic correlation between bud set and fall cold hardiness (O'NEILL et al. 2001). The relationships among these traits indicate that trees that set bud later have better growth (likely due to extending their growing season), but experience higher fall cold injury (lower cold hardiness), a pattern that is observed in many forest trees.

The phenotypic correlations of stem cold damage with bud set were moderate and highly significant (BS1,

 $F_{1,863} = 613.8$, P < 0.001, r = 0.64; BS2, $F_{1,863} = 396.5$, P < 0.001, r = 0.56; data from St. Clair *et al.* 2005 and St. Clair 2006). The correlation with height was weaker, but there was a significant correlation with height increment (HTINC: $F_{1,863} = 63.5$, P < 0.001, r = 0.26). The inferiority of heterozygotes for cold hardiness may thus be a correlated response that is a trade-off for higher growth. This explanation is consistent with the additive effects estimated for the CN637339.1-337 marker, with the G allele producing a later date of bud set (\sim 1 day later) while at the same time being correlated with \sim 0.28% higher cold damage to stems (Table 3).

The large number of loci consistent with nonadditive modes of gene action is also consistent with epigenetic effects. These effects have been identified primarily in Norway spruce [Picea abies (L.) Karst.], where the timings of bud burst in spring, cessation of leader shoot growth in summer, and bud set in autumn are processes that are modified according to the temperature during female meiosis (Johnsen et al. 1996; Hänninen et al. 2001; SAXE et al. 2001; JOHNSEN et al. 2005a,b). Conditions colder than normal advance the onset of these effects, while temperatures above normal delay their onset (Kvaalen and Johnsen 2008). Further work has shown that this is not a genotypic-selection scenario and is likely to be a long-lasting epigenetic phenomenon tied to the temperature and photoperiod of the maternal tree during seed production (Besnard et al. 2008).

The same traits as those shown to have epigenetic effects in Norway spruce have been implicated in coastal Douglas fir as showing strong evidence for phenotypic adaptation. Given that our sampling design was sensitive primarily to additive effects (*i.e.*, we used breeding values for the phenotypes) and that many of the deviations from additive effects are strong (*cf.* Table 3), epigenetic factors warrant further investigation. This is especially true because of the importance of this species to forest ecosystems in western North America and the inferred impacts of global climate change on its abundance and distribution.

Effects of population structure on association analyses: Strong population differentiation along an environmental gradient provides indirect evidence of the role of natural selection in shaping adaptive phenotypic variation (ENDLER 1986). This has aptly been demonstrated for a variety of cold-hardiness and growth-related phenotypes in coastal Douglas fir. Similar trends for the molecular genetic variation underlying these traits have been identified here, with most SNP genotypes tracking variation along the same gradient as their associated phenotypes (Figure 3). These gradients may be confounded with a contact zone between the coastal and the interior varieties of Douglas fir. Of particular interest are the 57 families located east of the Cascade crest in northeastern Washington. Inclusion of these families increased dramatically the number of significant associations from 30 to 164.

The disparity between these numbers could be due to neutral population structure not captured by the Q-matrix or strong population differences reflecting adaptive differentiation between varieties or intervarietal hybrids. The two varieties are differentiated strongly at 20 isozyme loci (LI and ADAMS 1989). If the families located east of the Cascade crest are the interior variety or intervarietal hybrids, unaccounted for population structure could inflate the number of false positives. If this was the case, we expect many loci to be differentiated strongly between the eastside families and those located west of the Cascade crest. This is not what is observed when considering those SNPs not associated strongly when all or just the westside families are included in the analyses (n = 184 SNPs; global F_{CT}) 0.019; 95% C.I., 0.010-0.035). This value is much lower in magnitude than that estimated between the varieties using allozymes ($G_{ST} = 0.116$; LI and Adams 1989). This suggests that the Q-matrix utilized in the GLMs is controlling correctly for background levels of population structure. The nonsignificant global estimate of $F_{\rm IS}$, moreover, supports our avoidance of a mixed linear model (MLM) (cf. Yu et al. 2006) approach using kinship estimates. Such an analysis was conducted for loblolly pine, with the general conclusion that the MLM and GLM approaches produced similar results due to the fact that individuals were related less than second cousins on average (González-Martínez et al. 2007).

It is more likely that the effects the eastside families have on the association results are those due to adaptive differentiation between populations. Seven markers cause the majority of the increase in significant association results due to the correlation between allele frequency and phenotypic differentiation across the Cascade crest. These seven markers have values of $F_{\rm CT}$ in the range of 0.08–0.22, which is an order of magnitude greater than the background level of differentiation. Further interpretation regarding the effects of these genes relative to the phenotypes is complicated given that most of the phenotypes also differ between these families and those located west of the Cascade crest.

Palynological data support a postglacial contact between varieties emerging from distinct southern Pleistocene refugia occurring ~7000 years ago (Tsukada 1982; Wells 1983). Given that the coastal variety is more similar to the northern populations of the interior variety at allozyme loci (LI and ADAMS 1989), it is probable that introgression has and is occurring between varieties east of the Cascade crest. This also suggests that cold-adapted alleles identified here may have originated in the interior variety. Consistent with this hypothesis are common garden studies of intervarietal hybrids, which yield data consistent with largely nonadditive allelic effects for growth and cold-hardiness traits in the hybrids (Rehfeldt 1977). Many of the associations detected here may also reflect the correlation between freezing and drought-stress tolerance (cf. BLÖDNER et al. 2005), especially given that water is one of the major limiting factors across the northern ranges of coastal and interior Douglas fir (LITTELL et al. 2008). Regardless of the hypothesis, it is clear that further phylogeographic investigations and association studies are needed across the entire range of coastal and interior Douglas fir.

Functions of candidate genes: Inferred functionality of associated candidate genes varied across trait categories. Genes associated to cold-tolerance traits had homology to loci encoding proteins involved with lignin biosynthesis and cell wall architecture, transcription regulation, and signal transduction in Arabidopsis. Similar types of genes were upregulated in Sitka spruce in response to cold temperatures (Holliday et al. 2008). There was a surprising lack of calcium-signaling related genes producing significant marker-trait associations. This is not the case with the inclusion of the 57 families located east of the Cascade crest. Inclusion of those families resulted in markers located within loci encoding a cysteine proteinase (*Pm_CL135Contig1*) and a cyclophilin (Pm_CL61Contig1) being associated with several cold-tolerance and phenology traits. Cyclophilins are involved with cysteine biosynthesis in plants and in calcium-calmodulin-activated serine/threoninespecific protein phosphatase calcineurin in humans and yeast (Wang and Heitman 2005; Dominguez-Solis et al. 2008).

Genes associated with phenology and emergence traits were homologous to loci encoding proteins involved with ribosome biogenesis (60s RPL31a) and stress tolerance (LEA-EMBL11). Notably, a SOUL heme-binding protein (Pm_CL783Contig1) had significant marker—trait associations with bud-set and rootshoot ratio. A homologous protein has been localized to vacuoles in Arabidopsis and linked putatively with hemoprotein synthesis (JAQUINOD et al. 2007).

Integration with population genetic results: Patterns of polymorphism and divergence for 2 of the 12 candidate genes identified here were characterized previously as deviant from null models incorporating genetic drift and some forms of historical demography (Eckert et al. 2009b). The Pm_CL234Contig1 locus has an excess of high-frequency derived polymorphisms (Fay and Wu's normalized H = -2.35, P < 0.05), a pattern that is consistent with hitchhiking, while the ES421311.1 locus has an excess of rare alleles (Tajima's D = -1.70, P< 0.05). Both of these results, however, did not survive multiple-test corrections or incorporation of severe bottlenecks into hypothesis tests of neutrality. The association reported here for the Pm_CL234Contig1 locus is with a marker segregating a high-frequency derived allele. This allele conveys a 1.11% reduction in cold damage to stems. A simplistic interpretation of this pattern is that the association detected here is due to the recent fixation of an advantageous haplotype containing the derived SNP allele. Future research combining population, quantitative, and landscape genetics, therefore, will offer new insights into the genetic architecture of cold-hardiness related traits in coastal Douglas fir.

Conclusions: We identified 30 marker-trait associations across 12 candidate genes and 10 cold-hardiness related traits. Marker effects were small (1% $< r^2 <$ 3.6%), consistent with a polygenic quantitative model, and tracked similar environmental gradients to those affecting the phenotypes to which the markers were associated. Higher-order effects (e.g., dominance) were prevalent throughout the association results, with 86% of the significant markers having nonadditive effects. Such results would benefit directly from validation in additional association populations (cf. Weber et al. 2008), especially since significant QTL-by-environment interactions have been documented for several adaptive traits (JERMSTAD et al. 2003). Nonetheless, these results represent a further step toward the dissection of cold hardiness in coastal Douglas fir.

We thank Valerie Hipkins and her staff at the National Forest Genetics Electrophoresis Laboratory located at the Institute for Forest Genetics (Placerville, CA) for performing the DNA extractions, Charles Nicolet and Vanessa Rashbrook for performing the SNP genotyping, and John Liechty and Benjamin Figueroa for bioinformatics support. This article was also much improved by incorporating comments from two anonymous reviewers. Funding for this project was made available through a U.S. Department of Agriculture National Research Initiative Plant Genome Grant (04-712-0084).

LITERATURE CITED

- AAGAARD, J. E., K. V. KRUTOVSKII and S. H. STRAUSS, 1998 RAPDS and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity 81: 69–78.
- AITKEN, S. N., and W. T. Adams, 1996 Genetics of fall and winter cold hardiness of coastal Douglas-fir in Oregon. Can. J. For. Res. 26: 1828–1837.
- AITKEN, S. N., and W. T. Adams, 1997 Cold hardiness under strong genetic control in Oregon populations of *Pseudotsuga menziesii* var. *menziesii*. Can. J. For. Res. **27:** 1773–1780.
- AITKEN, S. N., W. T. ADAMS, N. SCHERMANN and L. H. FUCHIGAMI, 1996 Family variation for fall cold hardiness in two Washington populations of coastal Douglas-fir (*Pseudotsuga menziesii* var. *menziesii* [Mirb.] Franco). For. Ecol. Manage. **80:** 187–195.
- AITKEN, S. N., S. YEAMAN, J. A. HOLLIDAY, T. WANG and S. CURTIS-McLane, 2008 Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1: 95–111.
- Besnard, G., V. Acheré, S. Jeandroz, Ø. Johnsen, P. Faivre Rampant *et al.*, 2008 Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies? Ann. For. Sci. **65:** 109–114.
- Blödner, C., T. Skrøppa, Ø. Johnsen and A. Polle, 2005 Freezing tolerance in two Norway spruce (Picea abies (L.) Karst.) progenies is physiologically correlated with drought tolerance. J. Plant Physiol. 162: 549–558.
- Brown, G. R., G. P. Gill, R. J. Kuntz, C. H. Langley and D. B. Neale, 2004 Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc. Natl. Acad. Sci. USA 101: 15255–15260.
- Campbell, R. K., 1986 Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. **35:** 85–96.
- CAMPBELL, R. K., and F. C. Sorensen, 1973 Cold acclimation in seedling Douglas-fir related to phenology and provenance. Ecology 54: 1148–1151.
- CAMPBELL, R. K., and F. C. Sorensen, 1979 A new basis for characterizing germination. J. Seed. Tech. 4: 24–34.
- Dominguez-Solis, J. R., Z. He, A. Lima, J. Ting, B. B. Buchanan *et al.*, 2008 A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc. Natl. Acad. Sci. USA **105**: 16386–16391.
- Eckert, A. J., B. Pande, E. S. Ersöz, M. H. Wright, V. K. Rashbrook et al., 2009a High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (*Pinus taeda* L.). Tree Genet. Genomes 5: 225–234.
- ECKERT, A. J., J. L. WEGRZYN, B. PANDE, K. D. JERMSTAD, J. M. LEE et al., 2009b Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold-hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183: (in press).
- ENDLER, J. A., 1986 Natural Selection in the Wild. Princeton University Press, Princeton, NJ.
- Eveno, E., C. Collada, M. A. Guevara, V. Léger, A. Soto *et al.*, 2008 Contrasting patterns of selection at *Pinus pinaster* Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol. Biol. Evol. **25**: 417–437.
- Excoffier, L., G. Laval and S. Schneider, 2005 Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1: 47–50.
- Falush, D., M. Stephens and J. K. Pritchard, 2003 Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
- FAN, J. B., A. OLIPHANT, R. SHEN, B. G. KERMANI, F. GARCIA et al., 2003 Highly parallel SNP genotyping. Cold Spring Harbor Symp. Quant. Biol. 68: 69–78.
- FOWLER, S., and M. F. THOMASHOW, 2002 *Arabidopsis* transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell **14:** 1675–1690.
- González-Martínez, S. C., E. S. Ersöz, G. R. Brown, N. C. Wheeler and D. B. Neale, 2006 DNA sequence variation and selection of tag SNPs at candidate genes for drought-stress response in *Pinus taeda* L. Genetics **172**: 1915–1926.
- González–Martínez, S. C., N. C. Wheeler, E. Ersöz, C. D. Nelson and D. B. Neale, 2007 Association genetics in *Pinus taeda* L. I. Wood property traits. Genetics **175**: 399–409.

- GONZÁLEZ-MARTÍNEZ, S. C., D. HUBER, E. ERSÖZ, J. M. DAVIS and D. B. NEALE, 2008 Association genetics in *Pinus taeda* L. II. Carbon isotope discrimination. Heredity 101: 19–26.
- Grattapaglia, D., and M. Kirst, 2008 Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol. 179: 911–929.
- Grattapaglia, D., C. Plomion, M. Kirst and R. R. Sederoff, 2009 Genomics of growth traits in forest trees. Curr. Opin. Plant Biol. 12: 148–156.
- GUY, C. L., K. J. NIEMI and R. BRAMBL, 1985 Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82: 3673–3677.
- Hall, D., V. Luquez, M. V. Garcia, K. R. St. Onge, S. Jansson et al., 2007 Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (*Populus tremula L.*): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61: 2849–2860.
- HÄNNINEN, H., E. BEUKER, Ø. JOHNSEN, I. LEINONEN, M. MURRAY et al., 2001 Impacts of climate change on cold hardiness of conifers, pp. 305–333 in Conifer Cold Hardiness, edited by F. BIGRAS and S. COLOMBO. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- HEUERTZ, M., E. DE PAOLI, T. KÄLLMAN, H. LARSSON, I. JURMAN et al., 2006 Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174: 2095–2105.
- HOLLIDAY, J. A., S. RALPH, R. WHITE, J. BOHLMANN and S. N. AITKEN, 2008 Global monitoring of gene expression during autumn cold acclimation among rangewide populations of Sitka spruce [*Picea sitchensis* (Bong.) Carr.]. New Phytol. 178: 103–122.
- HOWE, G. T., S. N. AITKEN, D. B. NEALE, K. D. JERMSTAD, N. C. WHEELER et al., 2003 From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247–1266.
- Ingvarsson, P., M. V. Garcia, D. Hall, V. Luquez and S. Jansson, 2006 Clinal variation in phyB2, a candidate gene for daylength-induced growth cessation and bud set, across a latitudinal gradient in European aspen (*Populus tremula*). Genetics 182: 1845–1855.
- INGVARSSON, P., M. V. GARCIA, V. LUQUEZ, D. HALL and S. JANSSON, 2008 Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (*Populus tremula*, Salicaceae). Genetics 178: 2217–2226.
- JAQUINOD, M., F. VILLIERS, S. KIEFFER-JAQUINOD, V. HUGOUVIEUX, C. BRULEY et al., 2007 A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell Proteomics 6: 394–412.
- JERMSTAD, K. D., D. L. BASSONI, K. S. JECH, N. C. WHEELER and D. B. NEALE, 2001a Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush. Theor. Appl. Genet. 102: 1142–1151.
- JERMSTAD, K. D., D. L. BASSONI, N. C. WHEELER, T. S. ANEKONDA, S. N. AITKEN et al., 2001b Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor. Appl. Genet. 102: 1152–1158.
- JERMSTAD, K. D., D. L. BASSONI, K. S. JECH, G. A. RITCHIE, N. C. WHEELER et al., 2003 Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III. Quantitative trait loci-by-environment interactions. Genetics 165: 1489–1506.
- JOHNSEN, Ø., T. SKRØPPA, O. JUNTTILA and O. G. DÆHLEN, 1996 Influence of the female flowering environment on autumn frost hardiness of Picea abies progenies. Theor. Appl. Genet. 92: 797–802.
- JOHNSEN, Ø., O. G. DÆHLEN, G. ØSTRENG and T. SKRØPPA, 2005a Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol. 168: 589–596.
- JOHNSEN, Ø., C. G. FOSSDAL, N. E. NAGY, J. MØLMANN, O. G. DÆHLEN et al., 2005b Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 28: 1090–1102.
- Kvaalen, H., and Ø. Johnsen, 2008 Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol. 177: 49–59.
- Krutovsky, K. V., and D. B. Neale, 2005 Nucleotide diversity and linkage disequilibrium in cold-hardiness and wood-

- quality related candidate genes in Douglas-fir. Genetics 171: 2029–2041.
- KRUTOVSKY, K. V., J. B. ST. CLAIR, R. SAICH, V. D. HIPKINS and D. B. NEALE, 2009 Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet. Genomics (in press).
- LANDEGREN, U., R. KAISER, J. SANDERS and L. HOOD, 1988 A ligase-mediated gene detection technique. Science 241: 1077–1080.
- LE CORRE, V., and A. KREMER, 2003 Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164: 1205–1219.
- Lee, B.-H., D. A. Henderson and J.-K. Zhu, 2005 The *Arabidopsis* cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17: 3155–3175.
- LI, P., and W. T. Adams, 1989 Range-wide patterns of allozyme variation in Douglas-fir (*Pseudotsuga menziesii*). Can. J. For. Res. 19: 149–161.
- Li, P., and W. T. Adams, 1993 Genetic control of bud phenology in pole-size trees and seedlings of coastal Douglas-fir. Can. J. For. Res. 23: 1043–1051.
- LITTELL, J., D. L. PETERSON and M. TJOELKER, 2008 Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol. Monogr. 78: 349–368.
- LONG, A. D., and C. H. LANGLEY, 1999 The power of association studies to detect the contribution of candidate gene loci to variation in complex traits. Genome Res. 9: 720–731.
- LOOPSTRA, C. A., and W. T. ADAMS, 1989 Patterns of variation in first-year seedling traits within and among Douglas-fir breeding zones in southwest Oregon. Silvae Genet. 38: 235–243.
- MORRIS, R. W., and P. T. SPIETH, 1978 Sampling strategies for using female megagametophytes to estimate heterozygosities in conifers. Theor. Appl. Genet. **51:** 217–222.
- Nамкооng, G., 1979 Introduction to quantitative genetics in forestry. Technical Bulletin 1588. USDA Forest Service, Washington, DC.
- Neale, D. B., 2007 Genomics to tree breeding and forest health. Curr. Opin. Genet. Dev. 17: 539–544.
- Neale, D. B., and P. K. Ingvarsson, 2008 Population, quantitative and comparative genomics of adaptation in forest trees. Curr. Opin. Plant Biol. 11: 1–7.
- Neale, D. B., and O. Savolainen, 2004 Association genetics of complex traits in conifers. Trends Plant Sci. 9: 325–330.
- OLIPHANT, A., D. L. BARKER, J. R. STUELPNAGEL and M. S. CHEE, 2002 BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 56–8(Suppl.): 60–61.
- O'NEILL, G. A., S. N. AITKEN and W. T. ADAMS, 2001 Genetic selection for cold hardiness in coastal Douglas-fir seedlings and saplings. Can. J. For. Res. 30: 1799–1807.
- Pavy, N., B. Pelgas, S. Beauseigle, S. Blais, F. Gagnon *et al.*, 2008 Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics **9:** 21.
- Pyhäjärvi, T., M. R. García-Gil, T. Knürr, M. Mikkonen, W. Wachowiak *et al.*, 2007 Demographic history has influenced nucleotide diversity in European *Pinus sylvestris* populations. Genetics 177: 1713–1724.
- Rehfeldt, G. E., 1977 Growth and cold hardiness of intervarietal hybrids of Douglas-fir. Theor. Appl. Genet. 50: 3–15.
- Rehffeldt, G. E., 1979 Ecological adaptations in Douglas-fir (*Pseudotsuga menziesii* var. *glauca*) populations. I. North Idaho and north-east Washington. Heredity **43**: 383–397.
- REHFELDT, G. E., 1983 Genetic variability within Douglas-fir populations; implications for tree improvement. Silvae Genet. 32: 9–14.
- REHFELDT, G. E., 1989 Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca): a synthesis. For. Ecol. Manage. 28: 203–215.
- SAKAI, A., and W. LARCHER, 1987 Frost Survival of Plants. Springer-Verlag, Berlin.
- SAVOLAINEN, O., and T. Pyhäjärvi, 2007 Genomic diversity in forest trees. Curr. Opin. Plant Biol. 10: 162–167.
- Saxe, H., M. G. R. Cannell, Ø. Johnsen, M. G. Ryan and G. Vourlitts, 2001 Tree and forest functioning in response to global warming. Tansley review no. 123. New Phytol. **149**: 369–400.

- Sekai, M., M. Narusaka, J. Ishida, T. Nanjo, M. Fujita et al., 2002 Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279-292.
- St. Clair, J. B., 2006 Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can. J. Bot. 84: 1110-1181.
- St. Clair, J. B., N. L. Mandel and K. W. Vance-Borland, 2005 Genecology of Douglas-fir in western Oregon and Washington. Ann. Bot. 96: 1199-1214.
- STINCHCOMBE, J. R., and H. E. HOEKSTRA, 2008 Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100: 158-170.
- STOREY, J. D., 2003 The positive false discovery rate: a Bayesian in-
- terpretation and the q-value. Ann. Stat. 31: 2013–2035. Thomashow, M. F., 1999 Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.
- THUMMA, B. R., M. F. NOLAN, R. EVANS and G. F. MORAN, 2005 Polymorphisms in cinnamoly CoA reductase (ccr) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171: 1257-1265.
- TSUKADA, M., 1982 Pseudotsuga menziesii (Mirb.) Franco: its pollen dispersal and late Quaternary history in the Pacific Northwest. Jpn. J. Ecol. **32:** 159–187.
- VIARD, F., Y. A. EL-KASSABY and K. RITLAND, 2001 Diversity and genetic structure in populations of *Pseudotsuga menziesii* (Pinaceae) at chloroplast microsatellite loci. Genome 44: 336-344.
- Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan et al., 2002 Ecological responses to recent climate change. Nature 416: 389-395.
- WANG, P., and J. HEITMAN, 2005 Protein family review: the cyclophilins. Genome Biol. 6: 226.
- Waples, R. S., and O. Gaggiotti, 2006 What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15: 1419-1439.
- Warnes, G., and F. Leisch, 2006 Genetics: population genetics. R Package, version 1.2.1. http://cran.r-project.org.
- Webber, J., P. Ott, J. Owens and W. Binder, 2005 Elevated temperature during reproductive development affects cone traits and

- progeny performance in Picea glauca x engelmannii complex. Tree Physiol. 25: 1219-1227.
- Weber, A. L., R. M. Clark, L. Vaughn, J. de Jesús Sánchez-GONZALEZ, J. Yu et al., 2007 Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays spp. parviglumis). Genetics 177: 2349-2359.
- Weber, A. L., W. H. Briggs, J. Rucker, B. M. Baltazar, J. de Jesús Sánchez-Gonzalez et al., 2008 The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180: 1221-
- Weiser, C. J., 1970 Cold resistance and injury in woody plants. Science 169: 1269-1278.
- Wells, P. V., 1983 Paleobiogeography of montane islands in the Great Basin since the last glaciopluvial. Ecol. Monogr. 53: 341-
- Wheeler, N. C., K. D. Jermstad, K. V. Krutovsky, S. N. Aitken, G. T. Howe et al., 2005 Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol. Breed. 15: 145-156.
- White, T. L., 1987 Drought-tolerance of southwestern Oregon Douglas-fir. For. Sci. 33: 283-293.
- WRIGHT, S. I., and B. S. GAUT, 2005 Molecular population genetics and the search for adaptive evolution in plants. Mol. Biol. Evol. **22:** 506-519.
- YAKOVLEV, I. A., C.-G. FOSSDAL, Ø. JOHNSEN, O. JUNTTLIA and T. Skrøppa, 2006 Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes 2: 39-52.
- Yu, J., G. Pressoir, W. H. Briggs, I. Vroh Bi, M. Yamasaki et al., 2006 A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38: 203-208.
- ZHAI, W., R. NIELSEN and M. SLATKIN, 2009 An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol. Biol. Evol. 26: 273-283.

Communicating editor: M. KIRST

GENETICS

Supporting Information

http://www.genetics.org/cgi/content/full/genetics.109.102350/DC1

Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits

Andrew J. Eckert, Andrew D. Bower, Jill L. Wegrzyn, Barnaly Pande, Kathleen D. Jermstad, Konstantin V. Krutovsky, J. Bradley St. Clair and David B. Neale

Copyright © 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.102350

 ${\bf TABLE~S1}$ Sample localities for the 700 families used for association mapping in coastal Douglas-fir

Sample ID	Latitude	Longitude	Elevation (m)	ANNAVT (°C)a
1004	43.238	-123.117	325	12.15
1005	43.369	-122.967	344	11.68
1006	43.369	-122.967	344	11.68
1007	42.734	-122.662	835	10.53
1008	42.718	-122.816	854	10.63
1009	43.299	-123.153	238	11.71
1011	43.513	-123.178	488	11.35
1014	43.717	-123.049	250	10.87
1026	44.414	-122.672	183	11.12
1027	44.412	-122.669	183	11.12
1029	44.537	-122.517	777	9.75
1030	44.538	-122.517	780	9.75
1031	44.525	-122.467	485	10.30
1032	44.565	-122.380	778	9.85
1043	44.849	-122.363	659	8.83
1044	44.849	-122.363	664	8.83
1046	44.849	-122.424	820	8.72
1047	44.810	-122.585	490	9.77
1048	44.978	-122.546	610	9.46
1050	45.017	-122.545	453	9.92
1052	44.987	-122.454	624	9.14
1056	44.986	-122.270	731	6.75
1066	45.448	-122.150	247	10.93
1074	46.506	-122.172	232	10.01
1079	46.358	-122.518	479	9.69
1080	46.358	-122.518	477	9.69
1081	46.408	-122.626	184	9.92
1084	46.672	-122.208	652	8.43
1087	47.147	-121.823	425	7.76
1094	47.130	-121.658	838	7.06
1095	47.593	-121.709	446	8.59
1098	47.949	-121.625	491	6.87
1100	42.255	-122.390	1427	6.22
1103	45.300	-121.752	1177	5.28
1105	46.764	-121.799	945	4.05
1106	48.314	-121.672	871	9.01

Eckert et al. 3 SI

1111	48.884	-121.777	737	5.34
1112	47.910	-121.311	532	5.66
1113	47.881	-121.330	718	5.99
1114	48.715	-121.139	305	7.90
1117	43.200	-124.200	68	11.43
1118	43.221	-123.907	413	11.77
1119	43.200	-124.050	209	12.14
1120	42.998	-123.737	410	11.56
1126	45.823	-122.017	549	8.34
1127	45.891	-122.185	748	8.93
1128	46.608	-122.455	466	8.92
1132	47.986	-121.708	382	8.33
1133	47.842	-121.655	108	9.26
1134	48.531	-121.755	63	9.88
1136	48.732	-121.064	541	8.32
1139	48.716	-121.155	311	8.02
1141	48.318	-121.649	559	9.14
1144	47.229	-121.908	447	9.18
1146	47.113	-121.843	1023	6.89
1147	47.117	-121.842	977	6.89
1149	47.303	-121.774	426	8.70
1150	47.302	-121.772	424	8.70
1154	47.287	-121.328	939	4.65
1159	47.334	-121.344	808	4.77
1163	47.423	-121.411	924	4.33
1171	42.835	-122.918	815	10.07
1172	42.891	-122.832	1040	9.41
1175	47.751	-121.123	1060	4.06
1176	47.753	-121.124	1169	4.06
1177	47.773	-121.078	1016	3.60
1191	44.623	-123.546	244	10.72
1195	44.332	-123.860	292	12.19
1197	44.342	-123.837	189	12.27
1199	44.272	-122.861	487	11.27
1200	44.620	-122.660	570	9.95
1201	44.620	-122.660	570	9.95
1202	44.602	-121.948	792	7.98
1207	44.969	-122.587	548	9.73
1208	45.116	-122.204	1089	7.67
1210	45.077	-122.076	539	9.91
1213	45.265	-122.217	426	10.64

1214	45.265	-122.214	427	10.64
1215	43.771	-122.346	730	10.59
1219	43.325	-122.192	1301	7.22
1220	43.324	-122.190	1310	7.22
1222	43.239	-122.336	1137	7.88
1223	44.191	-122.015	874	9.15
1224	44.194	-122.017	828	9.15
1229	45.755	-123.815	122	10.27
1230	45.755	-123.815	122	10.27
1232	45.771	-123.723	391	9.85
1233	45.624	-123.824	75	10.53
1236	46.182	-123.494	119	10.18
1237	46.108	-123.394	353	9.77
1238	46.067	-123.649	305	9.43
1239	45.983	-123.513	285	9.55
1240	45.834	-123.750	244	10.01
1241	45.836	-123.750	232	10.01
1242	45.780	-123.685	286	9.90
1243	45.908	-123.460	244	9.52
1245	45.806	-123.420	609	8.96
1246	45.935	-123.063	366	9.10
1247	46.307	-123.110	347	8.97
1248	46.306	-123.108	347	8.97
1249	46.281	-123.292	243	9.91
1250	46.397	-123.659	229	9.83
1251	46.586	-123.896	30	10.39
1252	46.540	-123.629	120	9.62
1253	46.561	-123.363	244	9.60
1254	46.611	-123.345	290	9.71
1255	47.314	-123.450	246	8.88
1258	47.057	-123.688	61	10.16
1259	47.147	-123.779	61	10.14
1260	47.218	-123.680	183	9.41
1261	47.352	-123.762	303	9.01
1262	47.380	-123.630	243	8.70
1263	47.181	-123.560	61	9.84
1264	46.992	-123.275	143	10.68
2009	45.394	-121.860	669	7.44
2010	45.004	-122.030	762	9.10
2011	45.091	-122.004	714	8.31
2012	45.018	-121.926	673	7.21

Eckert et al. 5 SI

2017	45.121	-121.910	960	6.36
2019	45.099	-122.026	961	8.89
2022	44.893	-121.903	1088	6.51
2023	45.415	-121.888	983	7.45
2024	44.909	-122.012	795	7.07
2029	43.287	-122.614	725	10.53
2034	43.217	-122.199	1604	6.34
2036	43.246	-122.236	1274	7.16
2037	43.186	-122.725	1427	9.74
2038	43.195	-122.651	1366	7.93
2039	43.165	-122.301	1719	5.19
2046	43.142	-122.795	1029	11.30
2051	43.131	-122.881	1276	10.15
2052	43.146	-122.664	1197	8.90
2056	43.139	-122.497	1136	7.62
2058	43.131	-122.515	1133	7.62
2060	43.567	-122.728	816	10.22
2069	43.424	-122.417	1120	8.02
2089	43.582	-122.381	1417	8.31
2093	44.270	-122.124	1185	7.58
3002	45.232	-122.527	160	11.31
3003	45.324	-122.150	511	10.39
3004	45.323	-122.154	551	10.39
3007	45.209	-122.450	288	11.04
3009	45.191	-122.342	386	10.37
3010	45.043	-122.249	1105	5.85
3011	45.120	-122.327	927	8.00
3012	45.122	-122.326	942	8.00
3013	45.066	-122.283	955	6.37
3023	44.734	-122.465	373	10.24
3024	44.736	-122.459	364	10.24
3027	44.513	-122.687	318	10.62
3029	44.740	-122.611	611	10.29
3031	44.783	-122.558	440	10.09
3036	44.123	-122.516	426	11.29
3042	43.799	-122.884	725	10.70
3050	44.323	-122.942	431	11.33
3051	44.325	-122.943	413	11.33
3052	44.300	-122.638	451	10.56
3053	44.150	-122.635	610	10.99
3056	44.278	-122.810	372	11.43

3059	44.029	-122.763	608	11.24
3066	43.564	-122.991	751	11.13
3069	43.353	-122.907	1223	11.51
3070	43.715	-122.832	807	10.75
3071	43.455	-122.891	492	11.36
3073	43.387	-122.753	673	10.87
3075	43.282	-123.004	793	11.53
3076	43.223	-123.006	569	11.81
3079	43.209	-122.940	728	11.74
3081	43.287	-122.964	576	11.34
3082	43.380	-123.213	289	11.74
3083	43.379	-123.212	286	11.74
3084	43.363	-123.234	389	11.78
3086	43.203	-123.132	557	12.61
3088	43.492	-123.066	365	12.07
3090	42.916	-123.187	586	11.74
3091	43.145	-123.134	575	12.52
3099	43.114	-123.066	744	12.29
3101	43.041	-122.998	851	11.60
3106	42.980	-122.954	865	11.35
3111	42.437	-122.529	1175	9.07
3112	42.433	-122.526	1209	9.07
3120	42.496	-122.577	1219	9.55
3125	42.146	-122.487	1402	7.03
3128	42.071	-122.560	1189	8.34
3129	42.112	-122.399	1159	8.09
3130	42.112	-122.402	1156	8.09
3131	42.111	-122.440	1240	7.40
3132	42.311	-122.583	1283	8.40
3136	42.208	-122.579	1204	8.80
3137	42.175	-122.337	1303	7.81
3138	42.110	-122.000	1581	7.33
3140	42.124	-122.105	1463	7.60
3144	45.234	-123.510	719	10.07
3145	45.234	-123.513	729	10.07
3147	44.320	-123.524	663	11.34
3148	44.321	-123.522	655	11.34
3153	43.154	-123.695	753	10.99
3154	42.241	-123.006	714	10.92
3155	42.264	-123.318	621	10.21
3156	42.259	-123.328	675	10.21

Eckert et al. 7 SI

3157	42.154	-122.837	1205	7.82
3158	42.151	-122.836	1148	7.82
3161	45.710	-122.958	426	9.59
3162	45.710	-122.954	415	9.59
3163	45.354	-123.384	540	9.46
3164	45.352	-123.385	613	9.46
3167	42.989	-123.439	679	11.55
3169	43.291	-123.944	317	11.85
3170	43.120	-123.933	193	11.90
3171	43.786	-123.135	459	11.13
3172	43.786	-123.129	452	11.13
3173	43.871	-123.291	326	11.52
3176	43.772	-123.230	304	11.50
3178	43.737	-123.401	417	11.11
3179	43.738	-123.403	410	11.11
3180	43.033	-123.919	405	11.74
3181	43.457	-123.622	351	11.57
3182	43.459	-123.622	378	11.57
3183	43.540	-123.473	250	11.71
3184	43.541	-123.473	263	11.71
3186	43.589	-123.332	231	11.62
3187	43.337	-123.553	669	12.06
3188	43.288	-123.600	677	12.01
3189	45.685	-123.039	328	10.07
3190	45.684	-123.042	294	10.07
3191	42.986	-123.441	731	11.55
3195	43.918	-123.707	536	11.08
3196	43.920	-123.710	577	11.08
3197	44.067	-123.647	624	11.48
3198	44.068	-123.649	635	11.48
3199	42.946	-123.947	476	11.76
3200	45.281	-123.472	853	9.39
3205	43.069	-124.008	371	11.94
3206	43.297	-123.831	480	11.80
3207	43.298	-123.832	467	11.80
3209	43.038	-123.911	409	11.74
3212	43.561	-123.775	303	11.77
3213	43.560	-123.775	298	11.77
3215	43.691	-123.603	243	11.59
3216	43.691	-123.603	243	11.59
3218	43.319	-124.073	87	11.66

3222	43.297	-123.815	442	11.77
3223	43.134	-123.754	677	10.90
3224	42.998	-124.069	237	11.92
3225	42.907	-124.148	194	11.67
3228	43.836	-123.502	306	11.30
3233	44.213	-123.608	548	11.61
3234	44.118	-123.748	122	11.90
3235	44.023	-123.621	288	11.43
3238	43.828	-123.354	217	11.38
3239	43.871	-123.184	323	11.21
3240	44.239	-123.438	485	12.07
3241	44.145	-123.479	252	11.63
3242	43.966	-123.428	335	11.36
3243	43.965	-123.573	258	11.44
3246	44.099	-123.521	314	11.43
3248	42.690	-123.816	418	11.61
3249	42.692	-123.817	394	11.61
3250	42.767	-123.771	855	10.89
3251	42.740	-123.848	399	11.71
3253	42.678	-123.646	714	10.70
3255	42.620	-123.782	730	10.65
3256	42.622	-123.782	753	10.65
3257	42.749	-123.680	975	11.14
3259	42.592	-123.666	1014	11.08
3261	42.649	-123.405	423	9.48
3262	42.484	-123.567	655	11.09
3263	42.482	-123.563	608	11.09
3264	42.127	-123.653	426	11.79
3265	42.261	-123.474	499	10.79
3268	42.226	-123.372	772	9.47
3269	42.348	-123.515	384	11.26
3270	42.317	-123.589	491	11.31
3271	42.073	-123.593	634	11.44
3272	42.145	-123.509	631	11.04
3273	42.227	-123.604	504	11.53
3275	42.657	-123.446	441	9.61
3281	42.618	-123.199	852	11.16
3286	42.475	-123.118	493	11.94
3288	42.541	-123.292	614	10.88
3291	42.383	-123.192	689	11.19
3294	42.664	-123.189	850	10.90

Eckert et al. 9 SI

3295	42.753	-123.133	1206	10.36
3298	42.753	-123.144	1219	10.36
3300	42.212	-123.125	664	10.38
3301	42.152	-122.997	625	9.62
3302	42.285	-123.058	746	10.71
3303	42.148	-123.231	750	9.70
3310	42.107	-123.006	748	8.29
3312	43.614	-123.497	463	11.79
3313	43.708	-123.504	275	11.49
3314	43.393	-123.588	301	11.65
3316	43.585	-123.411	483	11.21
3318	43.609	-123.381	246	11.27
3324	42.841	-123.561	584	10.81
3326	42.836	-123.463	584	10.95
3327	42.837	-123.460	660	10.95
3328	42.895	-123.609	563	10.82
3329	43.015	-123.477	414	11.49
3330	43.017	-123.479	369	11.49
3332	45.652	-122.913	344	10.52
3333	45.872	-123.056	427	8.82
3334	45.829	-123.078	345	8.88
3335	45.725	-123.062	309	9.41
3340	45.244	-123.427	543	9.74
3341	45.301	-123.449	732	9.04
3344	45.495	-123.778	475	10.42
3346	45.478	-123.279	289	10.18
3347	44.876	-123.458	268	9.92
3348	44.835	-123.599	427	8.93
3349	44.982	-123.433	245	10.27
3350	44.803	-123.637	362	9.66
3352	44.954	-123.723	764	7.56
3353	44.966	-123.801	754	8.62
3354	44.733	-123.538	201	9.80
3355	44.825	-123.493	579	9.31
3356	45.002	-123.530	322	10.02
3358	44.367	-123.457	577	11.86
3360	44.412	-123.695	563	10.73
3361	44.459	-123.470	244	10.95
3362	43.610	-123.378	245	11.27
3364	44.182	-123.613	548	11.61
3365	43.966	-123.573	298	11.44

4002	43.761	-121.799	1386	5.96
4004	44.436	-121.710	974	7.61
4005	44.435	-121.715	997	7.61
4006	44.564	-121.715	1219	7.11
4010	44.573	-121.727	1341	6.71
4011	44.485	-121.580	1327	6.84
4012	44.497	-121.766	1340	6.21
4013	44.222	-121.625	1249	6.90
4015	44.316	-121.715	1278	6.40
4016	45.073	-122.070	490	9.94
4017	45.507	-121.633	639	7.92
4018	44.994	-122.065	524	8.97
4021	45.309	-121.941	551	9.03
4023	45.505	-121.635	675	7.92
4024	45.200	-122.152	721	9.81
4027	45.549	-122.114	729	9.84
4028	45.167	-122.260	848	8.88
4033	45.124	-122.140	934	8.87
4034	45.005	-122.032	712	9.10
4036	44.942	-122.188	1022	7.45
4038	45.237	-122.060	1147	7.39
4039	45.227	-121.767	1058	5.74
4040	45.336	-121.853	1142	7.22
4041	45.094	-121.878	1185	6.66
4042	45.092	-121.878	1098	6.66
4046	45.645	-121.679	975	8.18
4047	45.552	-121.992	975	8.40
4050	45.048	-121.849	996	6.10
4051	45.123	-121.956	1177	6.28
4052	44.933	-121.984	1113	6.59
4055	45.348	-121.586	1132	5.78
4056	45.024	-121.754	1157	5.11
4060	45.336	-122.040	981	8.81
4066	45.212	-121.966	1279	6.81
4067	45.146	-121.442	801	9.04
4068	45.570	-121.506	755	8.42
4069	45.572	-121.508	742	8.42
4071	45.214	-121.416	792	9.07
4073	45.167	-121.639	1036	7.12
4074	45.134	-121.511	1032	8.60
4076	45.196	-121.510	1037	8.13

Eckert et al. 11 SI

4077	45.133	-121.509	1029	8.60
4083	45.273	-121.428	971	8.47
4084	45.271	-121.483	1277	7.34
4085	45.283	-121.680	1249	5.41
4088	42.811	-122.481	887	8.59
4095	42.735	-122.330	1248	6.31
4096	43.091	-122.252	1560	5.41
4097	42.852	-122.288	1648	4.57
4101	43.106	-122.316	1518	5.90
4103	42.484	-122.413	996	8.74
4104	42.482	-122.412	1007	8.74
4106	42.611	-122.384	1257	7.14
4107	42.551	-122.357	1228	7.30
4108	42.345	-122.386	1470	7.12
4109	42.430	-122.368	1481	6.86
4110	42.155	-122.701	1050	8.83
4112	42.827	-122.658	896	8.63
4116	43.733	-122.695	483	10.27
4118	43.669	-122.716	537	9.98
4119	43.152	-122.965	624	11.58
4130	43.331	-122.663	1122	10.48
4131	43.353	-122.386	1163	8.09
4133	43.219	-122.337	1461	7.25
4136	43.020	-122.713	740	11.14
4137	43.024	-122.871	849	11.11
4138	43.027	-122.871	877	11.11
4139	43.071	-122.622	914	10.30
4140	43.091	-122.583	897	9.55
4146	43.638	-122.420	565	10.60
4150	43.948	-122.552	554	10.92
4153	43.527	-122.430	913	9.69
4156	43.827	-122.529	915	10.12
4157	43.795	-122.507	731	10.60
4158	43.746	-122.547	630	10.20
4159	44.009	-122.612	631	10.96
4160	43.901	-122.338	734	10.31
4168	44.159	-122.137	487	9.14
4172	43.959	-122.055	853	8.16
4173	44.207	-122.286	846	9.79
4174	44.076	-122.244	732	9.61
4176	44.119	-122.033	668	8.43

4177	44.256	-122.025	878	9.04
4178	44.223	-122.052	677	9.19
4179	44.358	-121.992	934	8.20
4180	44.186	-122.166	614	9.22
4181	44.185	-122.169	611	9.22
4182	44.299	-122.192	1016	8.07
4192	44.366	-122.237	848	8.05
4193	44.402	-122.232	642	8.55
4194	44.373	-122.380	648	9.68
4196	44.433	-122.425	677	10.30
4199	44.418	-122.379	713	9.92
4200	44.368	-122.500	788	10.00
4201	44.388	-122.379	609	9.77
4202	44.667	-122.114	843	9.33
4203	44.791	-122.052	801	8.42
4204	44.383	-122.139	1332	7.27
4205	44.432	-122.002	1001	7.90
4209	44.558	-122.042	1158	8.11
4211	44.505	-122.000	1028	7.65
4214	42.725	-122.101	1372	6.26
4218	42.525	-122.089	1334	6.19
4221	42.447	-122.170	1344	6.51
5001	46.609	-121.627	866	8.31
5003	46.492	-121.859	882	8.99
5009	45.860	-121.901	672	8.69
5013	45.815	-121.809	771	8.56
5014	46.011	-121.901	889	7.73
5019	45.818	-121.687	605	8.31
5020	45.813	-121.685	609	8.31
5025	45.995	-121.629	1190	7.23
5028	45.922	-121.595	1185	7.24
5029	48.192	-121.500	272	8.25
5030	48.189	-121.497	248	8.25
5031	48.901	-121.640	792	5.56
5032	48.903	-121.638	798	5.56
5033	47.677	-120.556	1042	7.97
5034	47.677	-120.560	1103	7.97
5035	47.745	-120.672	601	7.69
5036	46.653	-121.225	1247	4.93
5037	46.654	-121.230	1268	4.93
5040	46.714	-121.517	925	6.37

Eckert et al. 13 SI

5041	46.743	-122.280	846	8.84
5043	46.462	-121.661	1216	6.34
5044	48.263	-121.361	296	7.75
5045	48.262	-121.356	297	7.75
5050	48.502	-121.610	517	9.34
5051	48.503	-121.613	531	9.34
5054	48.753	-121.583	621	7.80
5055	48.892	-121.853	757	5.62
5057	48.597	-121.421	689	9.43
5058	48.232	-121.547	734	9.08
5059	48.233	-121.553	730	9.08
5060	46.442	-121.873	397	8.55
5061	46.553	-121.767	311	8.09
5063	46.758	-121.947	746	6.47
5064	46.496	-121.583	1006	6.43
5065	46.410	-121.513	1123	7.19
5066	46.527	-121.663	1040	7.32
5068	46.723	-121.858	767	6.07
5069	46.631	-121.743	923	7.45
5070	46.355	-121.798	808	7.48
5073	46.327	-121.631	852	8.18
5074	46.324	-121.629	853	8.18
5075	46.308	-121.912	1084	6.94
5078	46.085	-121.975	435	9.48
5079	46.119	-122.004	382	9.66
5080	46.162	-121.871	513	8.65
5090	46.058	-121.530	826	7.78
5091	46.132	-121.663	1269	7.92
5092	46.148	-121.601	1259	7.17
5095	48.621	-121.388	686	9.22
5096	48.425	-121.530	568	9.04
5097	48.471	-121.209	484	8.00
5098	48.748	-121.946	706	6.05
5100	48.261	-121.398	415	7.83
5104	48.519	-121.242	723	8.20
5105	48.409	-121.798	636	8.43
5107	48.839	-121.897	683	5.19
5108	48.064	-121.292	630	5.60
5111	48.048	-121.476	697	6.63
5112	48.186	-121.372	656	6.80
5113	48.359	-121.440	862	8.52

5114	48.263	-121.284	669	7.85
5115	47.396	-121.548	495	5.55
5116	47.396	-121.547	496	5.55
5119	47.045	-121.754	1286	5.39
5123	46.991	-121.510	995	3.44
5124	46.991	-121.508	1138	3.44
5125	46.937	-121.958	992	6.54
5126	47.008	-121.499	1351	3.34
5128	47.082	-121.455	1232	3.93
5131	47.141	-121.539	928	5.82
5134	47.191	-121.369	1011	5.03
5135	47.581	-120.305	1099	8.68
5136	47.669	-120.354	962	8.01
5137	47.813	-120.454	1195	7.34
5138	47.847	-120.311	1449	7.51
5140	47.297	-120.462	1687	4.65
5141	47.719	-120.522	1356	7.17
5142	47.339	-120.588	1296	4.40
5144	47.781	-120.790	872	6.89
5145	47.915	-121.085	967	5.25
5146	47.851	-120.945	662	6.34
5147	47.888	-120.888	609	6.77
5148	47.840	-120.688	609	7.53
5149	47.838	-120.625	789	6.71
5150	47.540	-120.807	980	4.57
5152	47.951	-120.516	1069	7.04
5153	47.982	-120.535	1222	6.94
5154	47.197	-120.654	1004	5.60
5156	47.396	-121.086	818	4.33
5157	47.107	-120.851	797	5.81
5159	47.128	-120.944	1163	5.36
5160	47.297	-120.650	1107	4.50
5161	47.034	-120.949	1310	3.57
5163	47.296	-120.775	1344	4.53
5164	47.062	-121.030	1656	3.35
5165	47.175	-121.101	815	5.81
5166	47.543	-121.091	1056	2.08
5167	47.150	-121.208	1008	4.16
5168	47.425	-120.945	1280	1.92
5169	46.918	-121.134	1264	5.19
5170	46.886	-121.093	1242	5.69

Eckert et al. 15 SI

5171	46.688	-120.979	1334	6.20
5173	46.957	-120.971	1578	3.99
5175	46.942	-121.200	987	5.23
5176	47.063	-121.195	1076	5.25
5177	46.658	-121.269	1014	4.93
5178	46.567	-121.248	1097	4.63
5179	46.628	-121.313	1197	5.01
5180	47.035	-121.291	1511	4.35
5181	47.033	-121.299	1597	4.35
5182	46.508	-121.265	1313	4.16
5183	46.775	-121.110	1211	5.40
5206	47.183	-120.543	1460	3.46
6004	42.075	-123.558	948	11.13
6005	42.075	-123.548	975	11.13
6007	42.234	-123.778	1258	10.59
6008	42.162	-123.446	1161	10.26
6010	42.235	-123.779	1300	10.59
6011	42.432	-124.157	745	11.68
6012	45.089	-123.746	244	10.54
6013	45.194	-123.672	501	10.16
6015	45.182	-123.859	396	10.80
6016	44.403	-123.837	241	11.77
6017	44.169	-124.054	113	11.27
6018	44.419	-123.815	208	11.58
6021	44.405	-123.836	240	11.77
6023	44.396	-123.778	549	11.91
6024	44.160	-123.730	337	11.96
6025	44.158	-123.732	296	11.96
6026	42.506	-124.266	120	12.82
6028	42.659	-124.283	605	11.90
6030	42.518	-124.129	575	12.45
6031	42.464	-124.278	636	12.83
6032	42.254	-124.133	251	11.78
6034	42.020	-124.109	61	12.02
6035	42.315	-124.294	610	12.64
6038	42.152	-124.119	486	11.68
6039	42.111	-124.059	460	11.39
6040	42.050	-124.021	657	11.73
6041	42.272	-124.201	852	11.66
6042	42.186	-124.007	963	11.21
6047	42.713	-124.385	178	12.33

6050	42.811	-124.295	121	11.42
6052	42.720	-124.040	358	11.65
6053	42.687	-124.230	768	11.71
6054	42.779	-124.209	724	11.65
6055	42.707	-124.163	792	11.09
6056	42.885	-123.879	991	10.32
6057	42.864	-123.977	912	11.21
6070	42.384	-123.705	916	10.72
6071	42.122	-123.367	1194	8.59
6073	42.490	-123.715	1227	10.47
6074	42.417	-123.626	1113	10.49
6075	42.428	-123.778	1072	10.86
6076	42.022	-123.494	1284	9.41
6078	42.528	-124.019	524	13.04
6079	42.691	-123.875	812	12.07
6080	42.640	-123.973	726	12.08
6083	42.543	-123.845	1007	10.87
6084	42.649	-123.833	1084	10.46
6085	42.373	-124.177	1075	11.51
6087	45.120	-123.845	313	10.80
6088	45.310	-123.887	122	10.80
6089	45.337	-123.792	278	10.70
6090	44.895	-123.894	186	10.59
6091	44.969	-123.860	363	10.39
6092	44.529	-123.937	120	11.36
6093	44.287	-124.009	118	11.41
6094	44.387	-123.980	177	11.37
6095	44.121	-124.075	243	11.10
6097	44.229	-124.082	238	11.36
6099	44.294	-123.799	184	12.22
6101	44.548	-123.888	426	11.44
6102	44.487	-123.960	220	11.34
6104	44.262	-123.880	330	12.00
6105	44.518	-123.762	441	11.33
6106	44.348	-123.752	415	12.22
6107	44.118	-124.024	469	11.17
6109	44.264	-123.709	346	11.87
6110	44.459	-123.846	645	11.07
6113	43.979	-123.933	257	11.51
6115	44.214	-123.923	407	11.79
6118	43.731	-123.952	274	11.44

Eckert et al. 17 SI

6119	43.725	-123.901	336	11.42
7201	47.098	-123.855	61	10.38
7204	47.176	-123.868	61	10.24
7205	47.319	-123.908	151	9.94
7208	47.238	-123.836	127	9.78
7210	47.281	-123.880	122	9.87
7211	47.326	-123.790	171	9.08
7213	46.633	-123.669	63	10.61
7214	46.614	-123.649	61	10.48
7215	47.208	-123.942	65	10.28
8003	45.138	-123.758	603	10.25
8004	45.150	-123.750	586	10.25
8005	44.542	-121.638	930	7.93
8007	45.540	-122.338	61	11.78
8008	45.580	-122.101	61	10.26
8009	45.627	-121.967	55	10.75
8010	45.626	-121.969	56	10.75
8014	45.701	-121.621	61	10.09
8015	45.687	-121.434	61	10.15
8016	45.686	-121.432	61	10.15
8017	45.619	-121.345	606	9.98
8019	46.559	-123.227	197	10.57
8020	46.558	-123.227	217	10.57
8021	47.994	-123.213	647	8.20
8022	47.995	-123.214	632	8.20
8023	48.039	-123.053	140	9.78
8024	48.038	-123.052	141	9.78
8025	46.484	-123.562	438	9.07
8026	46.490	-123.569	505	9.07
8027	46.780	-123.552	162	10.21
8028	46.780	-123.550	153	10.21
8029	45.224	-123.341	331	10.62
8032	44.425	-121.744	1153	7.13
8033	44.423	-121.825	1407	5.19
8035	48.014	-123.943	555	7.54
8041	48.589	-120.480	795	6.00
8043	48.598	-120.571	1148	4.34
8044	48.599	-120.563	1115	4.34
8045	44.672	-123.749	61	10.89
8046	44.670	-123.747	61	10.89
8048	47.661	-120.522	836	7.68

8049	47.681	-120.588	960	8.08
8053	44.511	-123.560	1054	10.04
8060	44.676	-123.543	244	10.32
8061	44.478	-123.431	183	10.84
8063	43.281	-123.460	179	12.45
8067	44.358	-124.006	314	11.38
8068	44.356	-124.001	314	11.38
8069	44.388	-123.636	177	11.38
8070	44.386	-123.636	141	11.38
8072	44.707	-123.314	176	10.64
8074	43.233	-124.017	122	11.96
8075	43.181	-123.741	610	11.01
8076	43.179	-123.741	610	11.01
8079	47.619	-120.647	426	8.55
8080	47.617	-120.648	426	8.55
8083	44.663	-123.931	61	10.61
8084	48.013	-123.944	587	7.54
8086	45.819	-123.002	232	8.93
8091	44.471	-123.505	442	10.50
8092	44.504	-123.565	956	9.95
8098	45.945	-120.916	785	7.55
8099	45.945	-120.914	780	7.55
8100	46.560	-121.696	563	8.32
8503	45.253	-122.309	304	11.06
8504	45.267	-122.317	125	11.06
8518	48.055	-123.594	128	8.81
8519	48.056	-123.595	132	8.81
8520	48.112	-122.808	89	10.39
8521	48.113	-122.808	86	10.39
8522	43.200	-123.350	162	12.09
8524	44.850	-123.670	381	9.27
8525	44.849	-123.669	357	9.27
8526	45.870	-123.180	192	9.55
8532	45.221	-123.898	91	10.81
8533	47.420	-123.220	199	10.04
8534	47.420	-123.220	199	10.04
8538	46.900	-122.033	547	7.57
8539	43.600	-123.580	183	12.28
8541	47.000	-123.400	61	10.75
8542	47.000	-123.400	61	10.75
8543	47.910	-124.370	227	9.90

Eckert et al. 19 SI

8544 47.910 -124.370 227 9.90 8545 48.880 -121.950 444 7.34 8546 48.880 -121.950 444 7.34 8548 46.370 -122.620 242 9.81 8552 42.860 -124.057 122 11.83 8800 48.073 -122.091 112 10.35 8801 48.150 -122.114 127 10.35	
8546 48.880 -121.950 444 7.34 8548 46.370 -122.620 242 9.81 8552 42.860 -124.057 122 11.83 8800 48.073 -122.091 112 10.35	
8548 46.370 -122.620 242 9.81 8552 42.860 -124.057 122 11.83 8800 48.073 -122.091 112 10.35	
8552 42.860 -124.057 122 11.83 8800 48.073 -122.091 112 10.35	
8800 48.073 -122.091 112 10.35	
9901 49 150 199 114 197 10 35	
0001 +0.130 -122.114 127 10.33	
8811 47.084 -122.672 66 10.41	
8817 48.082 -121.966 128 10.33	
8836 45.001 -123.362 105 10.96	
8847 46.832 -122.859 122 10.50	

^aANNAVT = Annual average temperature

TABLE S2

Factor loadings for the 17 phenotypic traits used to construct principal components

Trait	PC1	PC2	PC3	PC4
budcold	0.211	-0.384	0.222	0.129
ndlcold	0.246	-0.296	0.318	0.088
stmcold	0.225	-0.373	0.285	0.105
BB2	0.187	-0.035	-0.406	-0.008
BS1	0.293	-0.236	-0.106	-0.005
BS2	0.238	-0.266	-0.174	0.205
DIAM	0.314	0.188	0.145	-0.153
EMEAN	-0.169	0.239	0.382	-0.151
FLUSH	0.085	0.345	0.089	0.609
FLUSHLG	0.142	0.322	0.086	0.582
HT1	0.292	0.173	0.145	-0.210
HTINC	0.308	0.158	-0.232	-0.077
RTLG	0.190	0.222	0.180	-0.209
RTSH	-0.271	-0.057	0.104	-0.047
RTWT	0.295	0.200	0.140	-0.220
SHWT	0.328	0.167	0.064	-0.148
TAPER	-0.165	-0.079	0.487	0.034

Eckert et al. 21 SI

TABLE~S3 A description of the 117 unique candidate genes from which 384 single nucleotide polymorphisms (SNPs) were chosen for genotyping via Illumina's $GoldenGate^{TM}~high-throughput~platform$

4CL1 4-coumarate:CoA ligase 1 5 4 KRUTOVSKY AND NEALE (2005 4CL2 4-coumarate:CoA ligase 2 4 3 KRUTOVSKY AND NEALE (2005 60s RPL31a 60S ribosomal protein L31a 4 3 KRUTOVSKY AND NEALE (2005 aba abscisic acid inducible protein 6 5 KRUTOVSKY AND NEALE (2005 apx ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 apx ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 atl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 atl α-tub	Locus ID	Gene Product	Attempteda	Successfulb	Source
4-coumarate:CoA ligase 2 4 3 KRUTOVSKY AND NEALE (2005 aba 608 RPL31a 608 ribosomal protein L31a 4 3 KRUTOVSKY AND NEALE (2005 aba abscisic acid inducible protein 6 5 KRUTOVSKY AND NEALE (2005 aba ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 aba ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 atl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 atl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 atl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 αtl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 αtl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 αtl α-tubulin 8 6 5 KRUTOVSKY AND NEALE (2005 αtl α-tubulin 9 to α-	40s	40S ribosomal protein S3a	3	1	KRUTOVSKY AND NEALE (2005)
608 RPL31a 608 ribosomal protein L31a 4 3 KRUTOVSKY AND NEALE (2005 aba abscisic acid inducible protein 6 5 KRUTOVSKY AND NEALE (2005 apx ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 atl α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 αtl α-tubulin 9 LECKERT et al. (2009a) CN634517.1 luminal binding protein 4 2 ECKERT et al. (2009a) CN634617.1 LRR receptor-like protein kinase 1 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN63661.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	4CL1	4-coumarate:CoA ligase 1	5	4	Krutovsky and Neale (2005)
abscisic acid inducible protein 6 5 KRUTOVSKY AND NEALE (2005 apx ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005 apt actubulin α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 apt actubulin α-tubulin 8 5 KRUTOVSKY AND NEALE (2005 αpt actubulin 8 5 KRUTOVSKY AND NEALE (2005 αpt actubulin 8 5 KRUTOVSKY AND NEALE (2005 αpt actubulin 1 1 ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 4 2 ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 4 2 ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 4 1 ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 6 1 lumpublished (2003 4517.1 luminal binding protein 1 l ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 1 l ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 1 l ECKERT et al. (2009a) (2003 4517.1 luminal binding protein 2 l ECKERT et al. (2009a) (2003 4517.1 luminal binding protein (HB2) 2 l ECKERT et al. (2009a) (2003 4517.1 luminal binding protein floop actual binding actual binding protein floop actual binding protein flo	4CL2	4-coumarate:CoA ligase 2	4	3	KRUTOVSKY AND NEALE (2005)
αpx ascorbate peroxidase 6 5 KRUTOVSKY AND NEALE (2005) at1 α-tubulin 8 5 KRUTOVSKY AND NEALE (2005) CD028057.1 calcium-dependent protein kinase 1 1 ECKERT et al. (2009a) CN634517.1 luminal binding protein 4 2 ECKERT et al. (2009a) CN634677.1 LRR receptor-like protein kinase 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635691.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN63691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 ECKERT et al. (2009a) CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 </td <td>60s RPL31a</td> <td>60S ribosomal protein L31a</td> <td>4</td> <td>3</td> <td>KRUTOVSKY AND NEALE (2005)</td>	60s RPL31a	60S ribosomal protein L31a	4	3	KRUTOVSKY AND NEALE (2005)
at1 α-tubulin 8 5 KRUTOVSKY AND NEALE (2005) CD028057.1 calcium-dependent protein kinase 1 1 ECKERT et al. (2009a) CN634517.1 luminal binding protein 4 2 ECKERT et al. (2009a) CN634677.1 LRR receptor-like protein kinase 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN6355490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635691.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN636691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 ECKERT et al. (2009a) CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN63673.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN	aba	abscisic acid inducible protein	6	5	KRUTOVSKY AND NEALE (2005)
CD028057.1 calcium-dependent protein kinase 1 1 ECKERT et al. (2009a) CN634517.1 luminal binding protein 4 2 ECKERT et al. (2009a) CN634677.1 LRR receptor-like protein kinase 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636673.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a)	арх	ascorbate peroxidase	6	5	KRUTOVSKY AND NEALE (2005)
CN634517.1 luminal binding protein 4 2 ECKERT et al. (2009a) CN634677.1 LRR receptor-like protein kinase 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636735.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	at1	α-tubulin	8	5	KRUTOVSKY AND NEALE (2005)
CN634677.1 LRR receptor-like protein kinase 1 1 ECKERT et al. (2009a) CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636747.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CD028057.1	calcium-dependent protein kinase	1	1	Eckert et al. (2009a)
CN634994.1 ADP-ribosylation factor 6 1 unpublished CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN634517.1	luminal binding protein	4	2	Eckert et al. (2009a)
CN635490.1 rare cold inducible protein 1 1 ECKERT et al. (2009a) CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN634677.1	LRR receptor-like protein kinase	1	1	Eckert et al. (2009a)
CN635596.1 phosphate-responsive protein 3 1 ECKERT et al. (2009a) CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN634994.1	ADP-ribosylation factor	6	1	unpublished
CN635674.1 pentatricopeptide (PPR) containing protein 2 1 ECKERT et al. (2009a) CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN635490.1	rare cold inducible protein	1	1	Eckert et al. (2009a)
CN635691.1 homeodomain protein (HB2) 2 2 ECKERT et al. (2009a) CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN635596.1	phosphate-responsive protein	3	1	Eckert et al. (2009a)
CN636014.1 heat shock protein 70 kDa 4 0 ECKERT et al. (2009a) CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN635674.1	pentatricopeptide (PPR) containing protein	2	1	Eckert et al. (2009a)
CN636134.1 CBL-interacting protein kinase 1 0 unpublished CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN635691.1	homeodomain protein (HB2)	2	2	Eckert et al. (2009a)
CN636149.1 cinnamyl alcohol dehydrogenase 1 0 ECKERT et al. (2009a) CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN636014.1	heat shock protein 70 kDa	4	0	Eckert et al. (2009a)
CN636303.1 actin depolymerizing factor 1 1 ECKERT et al. (2009a) CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN636134.1	CBL-interacting protein kinase	1	0	unpublished
CN636471.1 phenylalanine ammonia-lyase 5 5 ECKERT et al. (2009a) CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN636149.1	cinnamyl alcohol dehydrogenase	1	0	Eckert et al. (2009a)
CN636784.1 S-adenosylmethionine synthetase 4 0 ECKERT et al. (2009a) CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN636303.1	actin depolymerizing factor	1	1	Eckert et al. (2009a)
CN636795.1 xyloglucan:xyloglucosyl transferase 3 2 ECKERT et al. (2009a)	CN636471.1	phenylalanine ammonia-lyase	5	5	Eckert et al. (2009a)
, , , , , , , , , , , , , , , , , , , ,	CN636784.1	S-adenosylmethionine synthetase	4	0	Eckert et al. (2009a)
CN637244.1 cysteine protease inhibitor 2 2 ECKERT et al. (2009a)	CN636795.1	xyloglucan:xyloglucosyl transferase	3	2	Eckert et al. (2009a)
	CN637244.1	cysteine protease inhibitor	2	2	Eckert et al. (2009a)

CN637306.1	MYB-like transcription factor	3	3	Eckert et al. (2009a)
CN637339.1	unknown hypothetical protein	2	2	Eckert et al. (2009a)
CN637473.1	protein kinase domain containing protein	1	0	unpublished
CN637587.1	glycosyl hydrolase family protein	1	0	unpublished
CN637910.1	ABC family protein	3	2	Eckert et al. (2009a)
CN637944.1	bet v I domain containing protein	1	0	Eckert et al. (2009a)
CN638310.1	chloroplastic copper/zinc-superoxide dismutase	1	0	unpublished
CN638367.1	ATP-dependent RNA helicase-like protein	7	2	Eckert et al. (2009a)
CN638381.1	ABC transporter	4	2	Eckert et al. (2009a)
CN638489.1	α -expansin	3	3	Eckert et al. (2009a)
CN638545.1	trans-cinnamate 4-hydroxylase	5	1	Eckert et al. (2009a)
CN638556.1	transcription regulation protein	2	2	Eckert et al. (2009a)
CN639074.1	S-adenosylmethionine synthetase	3	2	Eckert et al. (2009a)
CN639087.1	LRR receptor-like protein kinase	1	1	Eckert et al. (2009a)
CN639211.1	eukaryotic initiation factor 4A	1	0	unpublished
CN639236.1	guanine nucleotide-binding beta subunit protein	7	2	Eckert et al. (2009a)
CN639480.1	2-hydroxyacid dehydrogenase	2	2	Eckert et al. (2009a)
CN639782.1	serine/threonine protein kinase	4	0	unpublished
CN640010.1	eukaryotic initiation factor-5	4	0	unpublished
CN640155.1	bicoid-interacting 3 domain containing protein	2	1	Eckert et al. (2009a)
CN640361.1	zinc-finger (C2H2 type) family protein	3	3	Eckert et al. (2009a)
CN640485.1	HNH endonuclease domain containing protein	3	3	Eckert et al. (2009a)
CN640521.1	DNA-binding bromodomain-containing protein	4	4	Eckert et al. (2009a)
CN640694.1	heat shock cognate protein 70 kDa	5	3	unpublished
CN641217.1	somatic embryogenesis receptor-like kinase	1	0	unpublished
CN641226.1	LRR receptor-like protein kinase	1	1	Eckert et al. (2009a)
efla	translation elongation factor-1	3	0	Krutovsky and Neale (2005)
erd15	early response to dehydration protein	4	4	Krutovsky and Neale (2005)

Eckert et al. 23 SI

ES418315.1	flavanone 3-hydroxylase	2	0	Eckert et al. (2009a)
ES419198.1	LIM domain protein	2	1	Eckert et al. (2009a)
ES419223.1	phytosulfokine precursor	4	2	Eckert et al. (2009a)
ES419242.1	response regulator protein	3	1	Eckert et al. (2009a)
ES419657.1	calmodulin	3	2	Eckert et al. (2009a)
ES419739.1	proline-rich protein	1	0	unpublished
ES420071.1	desaturase-like protein	2	1	unpublished
ES420250.1	dehydrin-like protein	12	4	Eckert et al. (2009a)
ES420560.1	HVA22F like protein	6	1	unpublished
ES420603.1	dehydrin-like protein	8	3	Eckert et al. (2009a)
ES420757.1	unknown hypothetical protein	9	5	Eckert et al. (2009a)
ES420771.1	anaphase promoting complex/cyclsome protein	2	2	Eckert et al. (2009a)
ES420802.1	MADS-box transcription factor	1	0	unpublished
ES420862.1	late embryo abundance (LEA) protein	3	3	Eckert et al. (2009a)
ES421219.1	UDP-glucosyltransferase family protein	2	2	Eckert et al. (2009a)
ES421311.1	unknown hypothetical protein	10	5	Eckert et al. (2009a)
ES421603.1	heat shock protein 90 kDa	4	2	Eckert et al. (2009a)
ES422367.1	ferritin	4	3	Eckert et al. (2009a)
ES424016.1	glutathione S-transferase	5	4	Eckert et al. (2009a)
ES425204.1	2-phospho-D-glycerate hydroxylase	2	0	unpublished
ES428620.1	14-3-3 protein	1	1	Eckert et al. (2009a)
f3h1	flavenone-3-hydroxylase	3	3	Krutovsky and Neale (2005)
f3h2	flavenone-3-hydroxylase	4	4	Krutovsky and Neale (2005)
formin	formin-like protein AHF1	3	2	Krutovsky and Neale (2005)
LEA-EMB11	late embryogenesis abundant EMB11 like protein	10	8	Krutovsky and Neale (2005)
lp3	water deficit-inducible protein	2	2	Krutovsky and Neale (2005)
mt	metallothionein-like protein	5	1	Krutovsky and Neale (2005)
Pm_CL135Contig1	cysteine proteinase	4	3	Eckert et al. (2009a)

Pm_CL1400Contig1	alpha-L-arabinofuranosidase/beta-D-xylosidase	1	1	Eckert et al. (2009a)
Pm_CL1692Contig1	zinc-finger containing protein	3	2	Eckert et al. (2009a)
Pm_CL1811contig1	chromatin remodeling ATPase	3	3	Eckert et al. (2009a)
Pm_CL1814Contig1	tetraspanin	1	1	Eckert et al. (2009a)
Pm_CL1868Contig1	actin depolymerizing factor	1	1	Eckert et al. (2009a)
Pm_CL1994Contig1	caffeate O-methyltransferase	9	3	Eckert et al. (2009a)
Pm_CL1997Contig1	sucrose synthase	1	0	Eckert et al. (2009a)
Pm_CL2089Contig1	putative formide amidohydrolase	1	1	Eckert et al. (2009a)
Pm_CL2133Contig1	mitochondrial transcription termination factor	3	3	Eckert et al. (2009a)
Pm_CL234Contig1	rab GTPase	3	3	Eckert et al. (2009a)
Pm_CL61Contig1	cyclophilin	4	3	Eckert et al. (2009a)
Pm_CL73Contig1	glycosyl hydrolase family protein	2	2	Eckert et al. (2009a)
Pm_CL783Contig1	SOUL heme-binding family protein	4	3	Eckert et al. (2009a)
Pm_CL795Contig1	WD-40 repeat family protein	1	0	Eckert et al. (2009a)
Pm_CL855Contig1	flavanone 3-hydroxylase	2	1	Eckert et al. (2009a)
Pm_CL919Contig1	HVA22-like protein	1	1	Eckert et al. (2009a)
Pm_CL922Contig1	thaumatin-like protein	2	2	Eckert et al. (2009a)
Pm_CL939Contig1	aluminum-induced protein	4	3	Eckert et al. (2009a)
Pm_CL969Contig1	cell division cycle protein	2	2	Eckert et al. (2009a)
sM13Df243	arabinogalactan 4	1	0	Eckert et al. (2009a)
sSPcDFD005F06506	regulator of chromosome condensation protein	2	2	Eckert et al. (2009a)
sSPcDFD024D11311	polcalcin	2	2	Eckert et al. (2009a)
sSPcDFD040B03103	MADS-box transcription factor	3	3	Eckert et al. (2009a)
sSPcDFE002A03003	ACC oxidase	3	1	Eckert et al. (2009a)
sSPcDFE003F04504	ccr4-NOT transcription complex protein	4	2	ECKERT et al. (2009a)
sSPcDFE025C06206	purple acid phosphatase	2	2	Eckert et al. (2009a)
sSPcDFE028B10110	β-amylase	4	4	Eckert et al. (2009a)
sSPcDFE038D06306	calcium binding protein with EF-hand motif	3	2	Eckert et al. (2009a)
sSPcDFE044F10510	mitochondrial substrate carrier family protein	4	3	Eckert et al. (2009a)
sSPcDFE049B06106	auxin-responsive family protein	1	1	Eckert et al. (2009a)

Eckert et al. 25 SI

sSPcDFE049E11411	pentatricopeptide (PPR) containing protein	4	4	Eckert et al. (2009a)
sSPcDFF014F08508	hypothetical water stress induced protein	1	1	Eckert et al. (2009a)
sSPcDFF015H05705	cytochrome P450 family protein	4	4	Eckert et al. (2009a)
sSPcDFF020H04704	cytochrome P450 mono-oxygenase	1	0	unpublished
sSPcDFF044H10710	auxin:hydrogen symporter/transporter	4	2	Eckert et al. (2009a)
tbe	thiazole biosynthetic enzyme	5	3	Krutovsky and Neale (2005)
ubq	polyubiquitin	11	3	Krutovsky and Neale (2005)
<i>Z</i> 49715.1	late embryo abundance (LEA) protein	2	0	Eckert et al. (2009a)
Total	117 candidate genes	$384~(3~\pm~2)$	$228~(2~\pm~1)$	

^aThe number of SNPs selected for genotyping using the GoldenGateTM platform. Counts greater than those reported in ECKERT *et al.* (2009a) were obtained from further sequencing of overlapping gene fragments. In all cases, only those SNPs reported by ECKERT *et al.* (2009a) produced successful genotyping results. Unpublished data are from the initial candidate gene search and sequencing efforts. The data and alignment quality, as well as the sample sizes (*n* < 6) were marginal and thus not reported by ECKERT *et al.* (2009a). These data were included as part of the effort to maximize the number of genes during our genotyping efforts.

^bThe number of attempted SNPs successfully genotyped using thresholds of 0.35 and 0.85 for the GenCall₅₀ (GC₅₀) and call rate (CR) indices, respectively (cf. Materials and Methods).

TABLE S4 $A \ {\bf Summary \ of \ trait \ distributions \ for \ families \ located \ on \ the \ east \ (n=57) \ or \ west \ (n=643) \ side \ of \ the \ Cascade }$ ${\bf crest \ in \ nor theastern \ Washington }$

	Mea	<u>an</u>	SD	SD		rcentile	97.5%	percentile	
Trait	West	East	West	East	West	East	West	East	P
Emergence									
EMEAN	0.0464	0.0548	0.0036	0.0052	0.0398	0.0437	0.0537	0.0626	< 0.0001
EMSTD	0.0040	0.0051	0.0008	0.0013	0.0026	0.0030	0.0058	0.0071	< 0.0001
Growth and Re	source Partitio	oning							
DIAM	6.2831	4.6459	0.5905	0.8913	5.1563	3.0689	7.4896	6.1719	< 0.0001
FLUSH	0.3663	0.1858	0.1480	0.1335	0.1027	0.0435	0.6658	0.5448	< 0.0001
FLUSHLG	3.0244	1.2815	1.3574	1.0945	0.7679	0.1349	6.0065	4.1533	< 0.0001
HT1	12.7592	9.8549	1.4007	2.0557	10.1291	5.9187	15.4611	13.2288	< 0.0001
HT2	34.8334	22.5848	4.2208	5.8961	26.8076	11.0347	43.0884	31.3365	< 0.0001
HTINC	22.1169	13.3210	3.3813	3.5290	15.6379	6.0605	28.9628	18.6697	< 0.0001
RTLG	34.0180	30.4717	2.3974	3.3505	29.8599	25.1587	38.8477	36.5531	< 0.0001
RTSH	0.4057	0.5061	0.0488	0.0791	0.3274	0.4075	0.5275	0.6784	< 0.0001
RTWT	3.4341	1.9156	0.6514	0.7266	2.3390	0.6280	4.7303	3.3014	< 0.0001
SHWT	9.1297	3.4978	2.1257	2.2642	5.3797	-0.5000	13.9938	7.0767	< 0.0001
TAPER	0.1868	0.2018	0.0154	0.0153	0.1598	0.1808	0.2203	0.2377	< 0.0001
TOTWT	12.5620	5.4211	2.7149	2.9884	7.8000	0.1010	18.2476	10.4156	< 0.0001
Phenology and	Cold-Tolerand	ce							
BB2	106.4323	93.7657	4.3771	4.5461	98.5273	85.0478	115.5121	101.2728	< 0.0001
BS1	273.8946	251.9865	7.1460	6.7834	257.7470	237.2549	287.2101	262.2807	< 0.0001
BS2	223.6687	197.2985	11.7032	5.8762	199.2543	189.6081	245.0801	213.3060	< 0.0001
budcold	4.4452	2.4618	1.2943	0.6507	2.0945	1.3837	6.8559	3.6764	< 0.0001
ndlcold	4.5273	0.8294	2.0766	0.4378	0.9820	0.1657	8.6796	1.6854	< 0.0001
stmcold	2.3840	0.0804	1.4293	0.2210	0.2351	-0.1834	5.5948	0.5261	< 0.0001
Other									
SDWT	0.6006	-6.6191	1.8811	2.3952	-3.6039	-12.0721	3.6660	-3.4418	0.0094
Multivariate Tr	aits								
Prin1	0.6006	-6.6191	1.8811	2.3952	-3.6039	-12.0721	3.6660	-3.4418	< 0.0001
Prin2	-0.0248	0.2633	1.6444	1.3845	-3.3419	-1.9155	2.7882	2.7883	0.2577
Prin3	-0.0607	0.7208	1.4232	0.9262	-2.6961	-0.8909	2.8324	2.5884	< 0.0001
Prin4	0.0561	-0.6562	1.2193	1.2480	-2.2766	-2.7710	2.4270	1.7803	0.0003

Eckert et al. 27 SI

TABLE S5 A list of significant marker-trait associations (FDR $Q \le 0.10$) for the complete data set when the 57 families located east of the Cascade crest are included (n = 700)

Trait	Locus	Gene Product	SNP	ASa	Annotationb	F	P	Q	r^2
Emergence									
EMEAN	60s RPL31a-418	60s RPL31a	[A/G]		Syn	6.3376	0.0019	0.0731	0.0162
EMEAN	ES421311.1-369	unknown hypothetical protein	[A/G]	G	NC	9.8506	0.0018	0.0709	0.0114
EMEAN	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	5.7559	0.0033	0.0941	0.0134
EMEAN	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	14.3703	0.0002	0.0165	0.0164
EMSTD	ES421311.1-369	unknown hypothetical protein	[A/G]	G	NC	15.1370	0.0001	0.0130	0.0198
EMSTD	Pm_CL2089Contig1-164	formide amidohydrolase	[A/G]	A	NC	5.7596	0.0033	0.0941	0.0152
EMSTD	ES424016.1-304	glutathione S-transferase	[A/G]	G	Syn	12.9894	2.9x10-6	0.0014	0.0335
EMSTD	sSPcDFE028B10110-166	β-amylase	[A/G]	G	Syn	5.7275	0.0034	0.0964	0.0152
Growth and R	esource Partitioning								
DIAM	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	8.0482	0.0004	0.0280	0.0188
DIAM	CN636471.1-406	phenylalanine ammonia-lyase	[A/G]	G	Syn	5.8081	0.0032	0.0923	0.0139
DIAM	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	5.8401	0.0031	0.0916	0.0140
DIAM	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	14.1490	0.0002	0.0182	0.0168
DIAM	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	12.2976	0.0005	0.0350	0.0144
DIAM	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	11.3928	1.4x10-6	0.0029	0.0263
DIAM	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	14.1102	0.0002	0.0182	0.0165
DIAM	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	5.9010	0.0029	0.0888	0.0138
DIAM	ES422367.1-165	ferritin	[A/T]	T	NC	8.5368	0.0036	0.0987	0.0124
DIAM	CN639236.1-518	guanine nucleotide-binding protein	[A/G]	A	Syn	7.6505	0.0005	0.0363	0.0185
DIAM	sSPcDFD040B03103-274	MADS-box transcription factor	[A/G]	G	Syn	10.0015	0.0016	0.0679	0.0118
DIAM	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	8.2101	0.0003	0.0256	0.0196
HT1	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	6.9221	0.0011	0.0569	0.0173
HT1	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	9.6428	0.0001	0.0102	0.0240
HT1	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	13.0680	0.0003	0.0263	0.0164

HT1	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	6.8173	0.0012	0.0573	0.0170
HT2	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.4425	0.0013	0.0603	0.0123
HT2	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	9.0032	0.0001	0.0149	0.0207
HT2	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	22.4929	2.6x10 ⁻⁶	0.0014	0.0256
HT2	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	5.9738	0.0027	0.0853	0.0138
HT2	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	5.7961	0.0032	0.0923	0.0138
HTINC	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	9.0177	0.0028	0.0863	0.0109
HTINC	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	6.1006	0.0024	0.0816	0.0144
HTINC	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	20.6848	6.4x10-6	0.0018	0.0241
RTLG	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	5.9251	0.0028	0.0863	0.0154
RTSH	4CL1-363	4-coumarate:CoA ligase 1	[A/G]		NS	9.4384	0.0022	0.0785	0.0118
RTSH	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	23.4072	1.6x10-6	0.0012	0.0288
RTWT	CN636471.1-406	phenylalanine ammonia-lyase	[A/G]	G	Syn	5.8174	0.0031	0.0916	0.0145
RTWT	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	6.8054	0.0012	0.0573	0.0169
RTWT	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.1984	0.0015	0.0647	0.0126
RTWT	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	9.4136	0.0022	0.0785	0.0115
RTWT	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	11.3955	1.4x10 ⁻⁵	0.0029	0.0274
RTWT	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	11.0928	0.0009	0.0515	0.0136
RTWT	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	6.8673	0.0011	0.0569	0.0167
RTWT	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	9.5940	0.0001	0.0102	0.0237
SHWT	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	6.0217	0.0026	0.0838	0.0145
SHWT	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.3524	0.0014	0.0620	0.0125
SHWT	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	10.3984	0.0013	0.0603	0.0124
SHWT	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	12.5203	4.6x10-6	0.0014	0.0291
SHWT	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	19.6600	1.1x10 ⁻⁵	0.0027	0.0231
SHWT	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	6.1195	0.0023	0.0809	0.0145
SHWT	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	8.6715	0.0002	0.0183	0.0209
TAPER	aba-609	abscisic acid inducible protein	[A/G]		NS	6.0486	0.0025	0.0821	0.0166
TAPER	<i>LEA-EMB11-</i> 263	late embryogenesis abundant protein	[A/C]		NC	13.2628	0.0003	0.0256	0.0185
TAPER	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	9.8753	0.0017	0.0691	0.0132

Eckert et al. 29 SI

TOTWT	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	6.3720	0.0018	0.0709	0.0154		
TOTWT	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.5291	0.0012	0.0573	0.0127		
TOTWT	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	10.5538	0.0012	0.0573	0.0126		
TOTWT	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	12.8221	3.4x10 ⁻⁶	0.0014	0.0298		
TOTWT	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	18.1082	2.4x10 ⁻⁵	0.0045	0.0213		
TOTWT	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	6.4525	0.0017	0.0691	0.0153		
TOTWT	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	9.0495	0.0001	0.0147	0.0218		
Phenology and Cold-Tolerance											
BB2	60s RPL31a-295	60s RPL31a	[A/G]		Syn	12.3169	0.0005	0.0350	0.0136		
BB2	60s RPL31a-418	60s RPL31a	[A/G]		Syn	6.8759	0.0011	0.0569	0.0165		
BB2	60s RPL31a-55	60s RPL31a	[A/G]		NC	6.7829	0.0012	0.0573	0.0162		
BB2	<i>LEA-EMB11-</i> 263	late embryogenesis abundant protein	[A/C]		NC	9.6815	0.0019	0.0731	0.0110		
BB2	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	13.3489	0.0003	0.0252	0.0148		
BB2	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	6.4892	0.0016	0.0679	0.0143		
BS1	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	6.3054	0.0019	0.0731	0.0147		
BS1	60s RPL31a-55	60s RPL31a	[A/G]		NC	7.2394	0.0008	0.0478	0.0185		
BS1	at1-329	α-tubulin	[A/C]		NS	10.5138	0.0012	0.0573	0.0124		
BS1	CN637306.1-520	MYB-like transcription factor	[A/G]	G	NC	7.4740	0.0006	0.0412	0.0173		
BS1	CN641226.1-250	LRR receptor-like protein kinase	[A/G]	A	Syn	5.7111	0.0035	0.0970	0.0137		
BS1	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	18.9944	1.5x10 ⁻⁵	0.0031	0.0221		
BS1	CN636303.1-403	actin depolymerizing factor	[A/G]	G	NC	8.8855	0.0030	0.0902	0.0103		
BS1	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	14.2304	8.8x10 ⁻⁷	0.0009	0.0323		
BS1	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	28.4701	1.3x10 ⁻⁷	0.0002	0.0323		
BS1	sSPcDFE049E11411-125	pentatricopeptide-containing protein	[A/G]	A	Syn	7.0908	0.0009	0.0512	0.0171		
BS1	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	12.3408	5.5x10 ⁻⁶	0.0016	0.0289		
BS1	sSPcDFE049E11411-306	pentatricopeptide-containing protein	[A/G]	A	NS	6.5533	0.0015	0.0647	0.0152		
BS2	60s RPL31a-295	60s RPL31a	[A/G]		Syn	8.5796	0.0035	0.0970	0.0109		
BS2	60s RPL31a-418	60s RPL31a	[A/G]		Syn	8.5957	0.0002	0.0192	0.0237		
BS2	60s RPL31a-55	60s RPL31a	[A/G]		NC	6.5477	0.0015	0.0647	0.0181		
BS2	CN637306.1-520	MYB-like transcription factor	[A/G]	G	NC	7.0210	0.0010	0.0535	0.0176		

BS2	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	9.2034	0.0025	0.0821	0.0118
BS2	CN636303.1-403	actin depolymerizing factor	[A/G]	G	NC	12.2867	0.0005	0.0350	0.0154
BS2	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	7.1318	0.0009	0.0497	0.0179
BS2	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	25.2455	6.5x10 ⁻⁷	0.0008	0.0310
BS2	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	7.4465	0.0006	0.0419	0.0192
budcold	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	13.7753	1.4x10-6	0.0011	0.0362
budcold	60s RPL31a-418	60s RPL31a	[A/G]		Syn	5.7003	0.0035	0.0970	0.0171
budcold	60s RPL31a-55	60s RPL31a	[A/G]		NC	6.4081	0.0018	0.0709	0.0190
budcold	CN637306.1-381	MYB-like transcription factor	[A/G]	A	Syn	6.2501	0.0020	0.0758	0.0168
budcold	CN638489.1-116	α -expansin	[A/G]	G	Syn	5.6775	0.0036	0.0987	0.0157
budcold	CN640521.1-370	DNA-binding bromodomain-containing protein	[A/G]	A	NS	5.6393	0.0037	0.0998	0.0151
budcold	erd15-635	early response to dehydration protein	[A/C]		NC	6.8841	0.0011	0.0569	0.0184
budcold	f3h2-54	flavanone-3-hydroxylase	[A/C]		NC	8.2260	0.0003	0.0256	0.0219
budcold	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.2329	0.0014	0.0620	0.0140
budcold	Pm_CL1692Contig1-234	zinc-finger containing protein	[A/G]	A	Syn	5.9370	0.0028	0.0863	0.0163
budcold	Pm_CL234Contig1-156	rab GTPase	[A/T]	T	NC	6.0741	0.0024	0.0816	0.0176
budcold	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	11.6125	3.2x10 ⁻⁵	0.0027	0.0308
budcold	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	15.3136	0.0001	0.0121	0.0204
budcold	CN637244.1-220	cysteine protease inhibitor	[C/G]	\mathbf{C}	NC	6.7158	0.0013	0.0603	0.0194
budcold	sSPcDFD040B03103-274	MADS-box transcription factor	[A/G]	G	Syn	13.1808	0.0003	0.0256	0.0177
budcold	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	7.3727	0.0007	0.0439	0.0204
ndlcold	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	12.9014	3.2x10 ⁻⁶	0.0014	0.0332
ndlcold	60s RPL31a-55	60s RPL31a	[A/G]		NC	6.4611	0.0017	0.0691	0.0189
ndlcold	CN637306.1-381	MYB-like transcription factor	[A/G]	A	Syn	7.1845	0.0008	0.0483	0.0188
ndlcold	CN639480.1-430	2-hydroxyacid dehydrogenase	[A/G]	A	Syn	6.1704	0.0022	0.0785	0.0165
ndlcold	erd15-635	early response to dehydration protein	[A/C]		NC	8.0377	0.0004	0.0280	0.0209
ndlcold	f3h2-54	flavanone-3-hydroxylase	[A/C]		NC	10.8717	2.3x10 ⁻⁵	0.0045	0.0281
ndlcold	<i>LEA-EMB11-</i> 263	late embryogenesis abundant protein	[A/C]		NC	10.3540	0.0014	0.0620	0.0142
ndlcold	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	14.8376	0.0001	0.0144	0.0197
ndlcold	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	16.2904	0.0001	0.0086	0.0213

Eckert et al. 31 SI

ndlcold	Pm_CL234Contig1-156	rab GTPase	[A/T]	Τ	NC	5.6360	0.0037	0.0998	0.0159
ndlcold	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	10.5164	3.2x10 ⁻⁵	0.0053	0.0273
ndlcold	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	\mathbf{G}	NS	21.6080	4.0x10-6	0.0014	0.0280
ndlcold	CN637244.1-220	cysteine protease inhibitor	[C/G]	\mathbf{C}	NC	7.7463	0.0005	0.0350	0.0219
ndlcold	sSPcDFD040B03103-274	MADS-box transcription factor	[A/G]	\mathbf{G}	Syn	17.3655	$3.5 x 10^{-5}$	0.0056	0.0227
ndlcold	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	6.2044	0.0021	0.0778	0.0168
stmcold	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	11.5068	1.2x10 ⁻⁵	0.0029	0.0301
stmcold	<i>4CL2</i> -459	4-coumarate:CoA ligase 1	[A/C]		NS	8.7503	0.0032	0.0923	0.0118
stmcold	60s RPL31a-55	60s RPL31a	[A/G]		NC	6.2177	0.0021	0.0778	0.0183
stmcold	<i>CN637306.1-</i> 381	MYB-like transcription factor	[A/G]	A	Syn	10.2248	4.2x10 ⁻⁵	0.0065	0.0269
stmcold	<i>CN637306.1-</i> 520	MYB-like transcription factor	[A/G]	\mathbf{G}	NC	6.1704	0.0022	0.0785	0.0163
stmcold	CN637339.1-337	unknown hypothetical protein	[A/G]	A	NS	7.1478	0.0009	0.0497	0.0202
stmcold	CN638489.1-116	α -expansin	[A/G]	\mathbf{G}	Syn	6.2658	0.0020	0.0758	0.0171
stmcold	erd15-635	early response to dehydration protein	[A/C]		NC	7.5300	0.0006	0.0396	0.0199
stmcold	f3h2-54	flavanone-3-hydroxylase	[A/C]		NC	12.5977	4.2x10-6	0.0014	0.0328
stmcold	<i>LEA-EMB11-</i> 263	late embryogenesis abundant protein	[A/C]		NC	10.2497	0.0014	0.0620	0.0142
stmcold	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	10.2807	0.0014	0.0620	0.0139
stmcold	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	\mathbf{G}	NC	12.0809	0.0005	0.0374	0.0161
stmcold	Pm_CL234Contig1-156	rab GTPase	[A/T]	Т	NC	7.7964	0.0005	0.0345	0.0221
stmcold	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	8.9471	0.0002	0.0154	0.0237
stmcold	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	\mathbf{G}	NS	16.9519	4.3x10 ⁻⁵	0.0065	0.0223
stmcold	CN637244.1-220	cysteine protease inhibitor	[C/G]	\mathbf{C}	NC	8.0176	0.0004	0.0283	0.0229
stmcold	sSPcDFD040B03103-274	MADS-box transcription factor	[A/G]	\mathbf{G}	Syn	11.6373	0.0007	0.0439	0.0155
stmcold	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	6.2044	0.0021	0.0778	0.0170
Other									
SDWT	ES420771.1-88	anaphase promoting complex protein	[A/C]	A	NS	9.1071	0.0026	0.0838	0.0127
Multivaria	nte Traits								
Prin1	<i>4CL1</i> -520	4-coumarate:CoA ligase 1	[A/G]		NS	9.5863	0.0001	0.0102	0.0207
Prin1	at1-329	lpha-tubulin	[A/C]		NS	9.0435	0.0027	0.0853	0.0100
Prin1	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	6.9327	0.0010	0.0545	0.0154

Pı	rin l	CN637306.1-520	MYB-like transcription factor	[A/G]	G	NC	6.7721	0.0012	0.0573	0.0147
Pı	rin l	<i>LEA-EMB11-</i> 372	late embryogenesis abundant protein	[C/G]		NC	6.1101	0.0023	0.0809	0.0135
Pı	rin l	ES420757.1-311	unknown hypothetical protein	[A/C]	\mathbf{C}	Syn	21.4710	4.3x10-6	0.0014	0.0233
Pı	rin l	Pm_CL135Contig1-665	cysteine proteinase	[A/G]	G	NC	14.0041	0.0002	0.0185	0.0153
Pı	rin l	Pm_CL61Contig1-134	cyclophilin	[A/G]	A	NC	17.4591	4.0x10 ⁻⁸	0.0001	0.0368
Pı	rin l	Pm_CL783Contig1-212	SOUL heme-binding family protein	[A/G]	G	NS	36.9866	2.0x10 ⁻⁹	< 0.0001	0.0390
Pı	rin l	Pm_CL919Contig1-355	HVA22-like protein	[A/C]	A	NS	5.8735	0.0030	0.0902	0.0128
Pı	rin l	sSPcDFD040B03103-274	MADS-box transcription factor	[A/G]	G	Syn	11.5676	0.0007	0.0446	0.0126
Pı	rin l	sSPcDFE049E11411-125	pentatricopeptide-containing protein	[A/G]	A	Syn	6.0511	0.0025	0.0821	0.0137
Pı	rin l	sSPcDFE049E11411-220	pentatricopeptide-containing protein	[A/G]	A	NS	10.7251	2.6x10-5	0.0046	0.0237
Pı	rin l	sSPcDFE049E11411-306	pentatricopeptide-containing protein	[A/G]	A	NS	5.7165	0.0035	0.0970	0.0125
Pı	rin2	60s RPL31a-418	60s RPL31a	[A/G]		Syn	10.8028	2.5x10 ⁻⁵	0.0045	0.0335
Pı	rin2	60s RPL31a-55	60s RPL31a	[A/G]		NC	9.2166	0.0001	0.0132	0.0285
Pı	rin2	CN637339.1-337	unknown hypothetical protein	[A/G]	A	NS	6.0494	0.0025	0.0821	0.0182
Pı	rin2	Pm_CL234Contig1-156	rab GTPase	[A/T]	Τ	NC	6.8320	0.0012	0.0573	0.0206
Pı	rin3	4CL1-520	4-coumarate:CoA ligase 1	[A/G]		NS	8.1685	0.0003	0.0258	0.0216
Pı	rin3	apx-288	ascorbate hydroxylase	[A/C]		NC	7.2288	0.0008	0.0478	0.0194
Pı	rin3	CN636471.1-437	phenylalanine ammonia-lyase	[C/G]	\mathbf{C}	Syn	5.8518	0.0030	0.0902	0.0158
Pı	rin3	CN637306.1-381	MYB-like transcription factor	[A/G]	A	Syn	6.8751	0.0011	0.0569	0.0182
Pı	rin3	erd15-635	early response to dehydration protein	[A/C]		NC	5.9931	0.0026	0.0838	0.0159
Pı	rin3	<i>LEA-EMB11-</i> 263	late embryogenesis abundant protein	[A/C]		NC	22.6840	2.4x10-6	0.0014	0.0310
Pı	rin3	Pm_CL2133Contig1-144	mitochondrial transcription termination factor	[C/G]	\mathbf{C}	Syn	5.8364	0.0031	0.0916	0.0155
Pı	rin3	Pm_CL2133Contig1-305	mitochondrial transcription termination factor	[A/T]	A	NS	5.8065	0.0032	0.0923	0.0154
Pı	rin4	60s RPL31a-55	60s RPL31a	[A/G]		NC	5.6490	0.0037	0.0998	0.0180

^aListed is the ancestral state as determined by comparison to a single sequence of bigcone Douglas-fir (*Pseudotsuga macrocarpa*). Dashes indicate that an outgroup sequence was unavailable.

^bNC, noncoding; NS, nonsynonymous; Syn, synonymous.

Eckert et al. 33 SI



FIGURE S1.—An illustration of the 20 populations defined for the hierarchical analysis of molecular variance (AMOVA). Colors and point types (circles and triangles) designate different populations. Colors are recycled across point types, so that, for example, there are pink circles and pink triangles. The red and orange triangles located in northeastern Washington represent the 57 families located east of the Cascade crest.

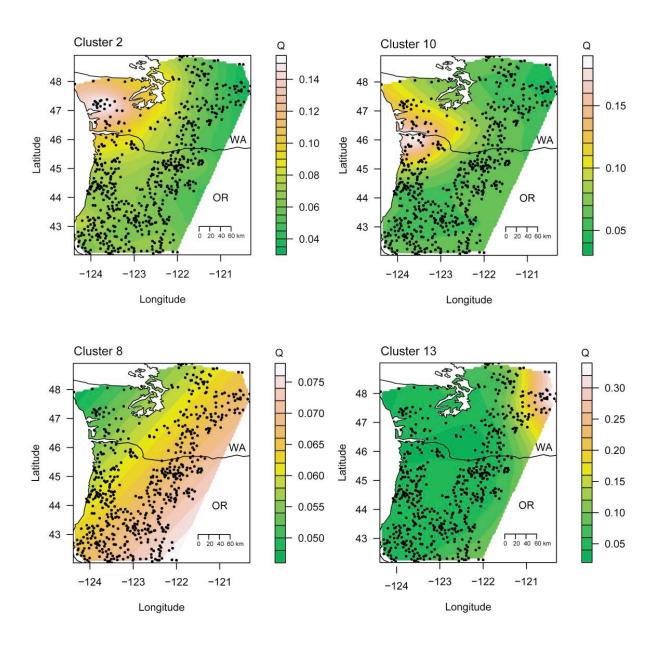


FIGURE S2.—An illustration of geographic trends in population structure for coastal Douglas-fir. For each of the 15 clusters, Q-values were smoothed with universal Kriging interpolation. Two patterns are apparent — a southwest to northeast trend (clusters 8 and 13) and a cluster centered on the coast of Washington (clusters 2 and 10). Points mark sampled mother trees (n = 700).

Eckert et al. 35 SI

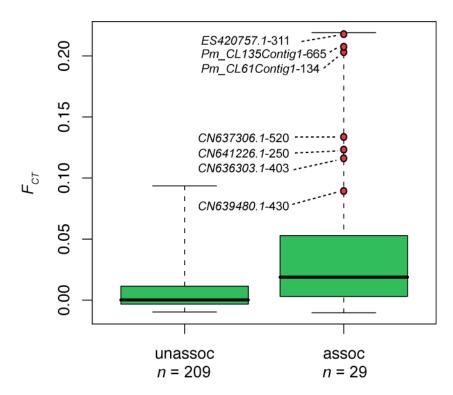


FIGURE S3.—Boxplots of the distribution of population structure estimates (F_{CT}) for markers associated with at least one trait when the 57 eastside families are included in the analysis (assoc) versus those that remain unassociated regardless of whether or not these families are included (unassoc). Dashed lines extend to the data extremes. The former class has a set of 15 markers removed due to overlap with the associations presented for the reduced data set. Thus, these 29 markers produce unique associations when the 57 families under consideration are included in the analysis. The latter class includes 25 allozyme markers from KRUTOVSKY *et al.* (2009). Points denote those markers with extreme levels of differentiation. They account for 40% of the increased number of associations.

FILES S1-S5

Files S1 through S5 are available for download at http://www.genetics.org/cgi/content/full/genetics.109.102350/DC1. These text files contain the Primer sequences used for SNP discovery and Illumina genotyping.